Watch an Enormous “Plasma Snake” Erupt from the Sun

SOHO LASCO C2 (top) and SDO AIA 304 (bottom) image of a solar filament detaching on April 28-29, 2015

Over the course of April 28–29 a gigantic filament, briefly suspended above the surface* of the Sun, broke off and created an enormous snakelike eruption of plasma that extended millions of miles out into space. The event was both powerful and beautiful, another demonstration of the incredible energy and activity of our home star…and it was all captured on camera by two of our finest Sun-watching spacecraft.

Watch a video of the event below.

Made from data acquired by both NASA’s Solar Dynamics Observatory (SDO) and the joint ESA/NASA SOHO spacecraft, the video was compiled by astronomer and sungrazing comet specialist Karl Battams. It shows views of the huge filament before and after detaching from the Sun, and gives a sense of the enormous scale of the event.

At one point the plasma eruption spanned a distance over 33 times farther than the Moon is from Earth!

Filaments are long channels of solar material contained by magnetic fields that have risen up from within the Sun. They are relatively cooler than the visible face of the Sun behind them so they appear dark when silhouetted against it; when seen rising from the Sun’s limb they look bright and are called prominences.

When the magnetic field lines break apart, much of the material contained within the filaments gets flung out into space (a.k.a. a CME) while some gets pulled back down into the Sun. These events are fairly common but that doesn’t make them any less spectacular!

Also read: Watch the Sun Split Apart

This same particularly long filament has also been featured as the Astronomy Picture of the Day (APOD), in a photo captured on April 27 by Göran Strand.

For more solar news follow Karl Battams on Twitter.

Image credits: ESA/NASA/SOHO & SDO/NASA and the AIA science team.

*The Sun, being a mass of incandescent gas, doesn’t have a “surface” like rocky planets do so in this case we’re referring to its photosphere and chromosphere.

Structure of the Universe

Galaxy cluster Abell 85, seen by Chandra, left, and a model of the growth of cosmic structure when the Universe was 0.9 billion, 3.2 billion and 13.7 billion years old (now). Credit: Chandra

[/caption]The large-scale structure of the Universe is made up of voids and filaments, that can be broken down into superclusters, clusters, galaxy groups, and subsequently into galaxies. At a relatively smaller scale, we know that galaxies are made up of stars and their constituents, our own Solar System being one of them.

By understanding the hierarchical structure of things, we are able to gain a clearer visualization of the roles each individual component plays and how they fit into the larger picture. For example, if we go down to the world of the very small, we know that molecules can be chopped down into atoms; atoms into protons, electrons, and neutrons; then the protons and neutrons into quarks and so on.

But what about the very large? What is the large-scale structure of the universe? What exactly are superclusters and filaments and voids? Let’s start by looking at galaxy groupings and move on to even larger structures.

Although there are some galaxies that are found to stray away by their lonesome, most of them are actually bundled into groups and clusters. Groups are smaller, usually made up of less than 50 galaxies and can have diameters up to 6 million light-years. In fact, the group in which our Milky Way is a member of is made up of only a little over 40 galaxies.

Generally speaking, clusters are bunches of 50 to 1,000 galaxies that can have diameters of up to 2-10 megaparsecs. One very peculiar property of clusters is that the velocities of their galaxies are supposed to be too high for gravity alone to keep them bunched together … and yet they are.

The idea that dark matter exists starts at this scale of structure. Dark matter is believed to provide the gravitational force that keeps them all bunched up.

A great number of groups, clusters and individual galaxies can come together to form the next larger structure – superclusters. Superclusters are among the largest structures ever to be discovered in the universe.

The largest single structure to be identified is the Sloan Great Wall, a vast sheet of galaxies that span a length of 500 million light-years, a width of 200 million light-years and a thickness of only 15 million light-years.

Due to the limitations of today’s measuring devices, there is a maximum level to which we can zoom out. At that level, we see a universe made up of mainly two components. There are the threadlike structures known as filaments that are made up of isolated galaxies, groups, clusters and superclusters. And then there are vast empty bubbles of empty space called voids.

You can read more about structure of the universe here in Universe Today. Want to read about the cosmic void: could we be in the middle of it? We’ve also written about probing the large scale structure of the universe.

There’s more about it at NASA. Here are a couple of sources there:

Here are two episodes at Astronomy Cast that you might want to check out as well:

Sources: NASA WMAP, NASA: Sheets and Voids