Triple Barreled Powerhouse Plows Dazzling Path to Orbit for Clandestine NRO Eavesdropper – Gallery

United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — A top secret eavesdropping satellite constructed to support America’s national defense plowed a dazzling path to orbit Saturday riding atop the immense firepower of the mightiest rocket in the world – the triple barreled Delta IV Heavy powerhouse.

Note: Story expanding with more photos/videos !!

A United Launch Alliance (ULA) Delta IV Heavy rocket carrying a classified payload for the National Reconnaissance Office (NRO) soared to space under mostly sunny sunshine state skies from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fla., on June 11 at 1:51 p.m. EDT.

Although the actual launch time was classified, liftoff of the 24 story tall monster rocket came right at the opening of the publicly announced launch window – on its ninth mission overall.

The clandestine surveillance satellite with the nondescript name NROL-37 blazed to space on over two million pounds of liftoff thrust – putting on a stunning display of one of the biggest and baddest launches in many years from the Florida Space Coast.

“We are so honored to deliver the NROL-37 payload to orbit for the National Reconnaissance Office during today’s incredible launch,” said Laura Maginnis, ULA vice president of Custom Services, in a statement.

“This was the ninth time ULA launched the Delta IV Heavy, the most powerful launch vehicle in existence today.”

United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
Ignition and liftoff … United Launch Alliance Delta 4 Heavy rocket blasts off with NROL-37 spy satellite on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

To the eyes and ears of myself and many space journalist friends it was among the very the best and loudest blastoffs since the retirement of NASA’s space shuttle orbiter fleet back it 2011.

Spectators ringing the beaches and packing the hotels along the Atlantic Ocean shore and beyond could hear the engines roar reverberating for more than 5 minutes, even after it disappeared far far way in the distant clouds.

Spectators east of the Cape and watching from more than 20 miles away told me they hear the rockets roar and feel the rumbling in their houses and apartments even after it disappeared from sight.

The 235-foot-tall rocket arced over eastwards towards the African continent on its path skywards, providing clues to its intended orbit.

Although a preplanned communications blackout was instituted by ULA and the US military some five minutes after liftoff, it is believed that the Delta IV Heavy successfully delivered NROL-37 to a geostationary orbit and an altitude of approximately 22,300 miles.

Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

Saturdays successful liftoff came 48 hours after gloomy weather related to Tropical Storm Colin in the so called ‘sunshine state’ forced a postponement for the mammoth satellite valued at over $1.5 Billion.

“The team worked together through many challenges this flow including, overcoming the aftereffects of Tropical Storm Colin,” said Maginnis.

“We are proud of the outstanding teamwork between the ULA, NRO and Air Force partners to ensure mission success for this critical national security asset.”

The most powerful rocket in existence today was required for this launch since the immense payload reportedly weighs in excess of 17,000 pounds.

Double ignition of United Launch Alliance Delta 4 Heavy booster and birds carrying NROL 37 spysat to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
Double ignition of United Launch Alliance Delta 4 Heavy booster and birds carrying NROL 37 spysat to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

NROL-37 is being launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

Reports indicate it may be one of the largest satellites ever launched, weigh some 17,000 pounds and may deploy an antenna over 300 feet wide for eavesdropping purposes.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Launch of ULA Delta 4 Heavy with NROL-37 spysat on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: SpaceHeadNews/Lane Hermann
Launch of ULA Delta 4 Heavy with NROL-37 spysat on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: SpaceHeadNews/Lane Hermann

Witnessing a Delta IV Heavy rumble to orbit is a rather rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

Watch these spectacular launch videos from remote video cameras set at the pad:

Video Caption: NROL-37 launch on ULA Delta IV Heavy from the front pond camera location at CCAFS on June 11, 2016. Credit: Jeff Seibert

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Each first stage CBC is powered by an upgraded RS-68A engine generating 702,000 pounds of thrust.

The three CBCs generate a combined 2.1 million pounds of thrust fueled by cryogenic liquid oxygen and liquid hydrogen.

A single RL10 liquid hydrogen/liquid oxygen engine powers the Delta second stage.

The secret satellite was enclosed in a 5 meter diameter payload fairing.

Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.   Credit: Julian Leek
Launch of ULA Delta 4 Heavy with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Julian Leek

ULA manufactures the Delta rocket family in Decatur, Alabama. Aerojet Rocketdyne builds the booster and upper stage engines.

ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl.   Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rocket delivers NROL-37 spy satellite to orbit on June 11, 2016 from Space Launch Complex-37 on Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 14/15: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Riding a Fountain of Fire the Delta IV Heavy makes ‘First Contact’ with Space - after launching on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Riding a Fountain of Fire the Delta IV Heavy makes ‘First Contact’ with Space – after launching on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rides to orbit on a massive spongy looking vapor trail after blastoff with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
ULA Delta 4 Heavy rides to orbit on a massive spongy looking vapor trail after blastoff with NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Massive vapor trail to orbit after blastoff of ULA Delta 4 Heavy with top secret NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Jillian Laudick
Massive vapor trail to orbit after blastoff of ULA Delta 4 Heavy with top secret NROL-37 surveillance satellite on June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Jillian Laudick
Delta rocket at dawn at launch pad 37 on launch day June 11, 2016 from Cape Canaveral Air Force Station, Fl.  Credit: Ken Kremer/kenkremer.com
Delta rocket at dawn at launch pad 37 on launch day June 11, 2016 from Cape Canaveral Air Force Station, Fl. Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

World’s Largest Rocket Ready to Rumble Saturday With Secret NRO Spy Satellite – Watch Live

Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Flock of 5 pelicans fly close recon over unveiled Delta 4 Heavy rocket set to launch NROL-37 spy satellite to orbit on June 11, 2016 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL AIR FORCE STATION, FL — The world’s largest rocket was ready to rumble with a secret spy satellite for the NRO until Thursday’s stormy weather across the so-called ‘sunshine state’ postponed the engines roar by 48 hours to Saturday, June 11.

After a forlorn four hour wait in hopes of a parting of the gloomy gray rainy skies around the Florida Space Coast, launch officials with rocker maker United Launch Alliance (ULA) threw in the towel at 6 p.m. EDT and kept the triple barreled Delta 4 Heavy rocket and its over $1.5 Billion clandestine cargo critical to national defense prudently grounded for a better day.

An early afternoon blastoff of the classified NROL-37 spy satellite for the National Reconnaissance Office (NRO) atop the powerful ULA Delta IV Heavy rocket is now slated for 1:51 p.m. EDT from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Saturday, June 11.

The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016.  Credit: Ken Kremer/kenkremer.com
The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016. Credit: Ken Kremer/kenkremer.com

In an unusual move, the launch time of America’s newest spy satellite on America’s most powerful rocket had been announced in advance of Thursday’s plans by ULA. Liftoff of the NROL-37 surveillance satellite had been slated for 1:59 p.m. June 9. Saturdays launch time has moved up 8 minutes.

The good news is you can watch the now weekend launch live via a ULA broadcast which starts 20 minutes prior to the given launch time at 1:31 p.m. EDT June 11.

Webcast link: http://bit.ly/div_nrol37

Or – if you are free and mobile – you can watch this truly impressive feat with your own eyes as a rarely afforded treat – by making your way to the many excellent viewing locations surrounding Cape Canaveral.

Since this is a national security launch, the exact launch time and launch window are both actually classified. So the liftoff could easily occur later than 1:51 p.m. EDT Saturday.

Although the announced ‘launch period’ on Thursday extended until 6:30 p.m. EDT (2230 GMT), the actual launch window was also classified and fell somewhere within that lengthy launch period.

Due to Thursday’s weather scrub at 6 p.m. , we can now probably conclude that the actual launch window for NROL-37 lasts about 4 hours. So Saturday’s full launch window should run until shortly before 6 p.m. EDT.

Unfortunately the weather outlook has deteriorated from earlier indications and may be as trying as Thursday’s launch attempt.

The official Air Forces prognosis calls for only a 40% chance of favorable weather conditions on June 11.

The primary concerns are for Anvil Clouds, Cumulus Clouds and Lightning – quite similar to those on June 9.

“The trough that lingered in the area all week and caused multiple weather Launch Commit Criteria violations yesterday will continue to plague the area today.

Meteorological models are now showing the boundary still lingering in the area Saturday, and an upper-level short wave will also move through during the launch window,” according to the official Air Force forecast for June 11.

“Showers and thunderstorms are still likely along the trough. Also, anvils from inland thunderstorms will migrate toward the Space Coast.”

In case of a scrub for any reason related to technical or weather issues, ULA has NOT announced the next launch opportunity, a ULA spokesperson told Universe Today.

The Air Force did say that the weather odds rise significantly to an 80% chance of favorable weather conditions in case of a potential 48 hour scrub turnaround for potential on Monday, June 13.

Whenever the 24 story tall rocket soars skyward it will put on a spectacular sky show.

Virtually nothing is known about the clandestine payload, since its mission, purpose and goals are classified top secret – but it is absolutely vital to America’s national security.

The 235-foot-tall rocket will likely launch the classified NROL-37 surveillance satellite into a geosynchronous orbit and an altitude of 22,300 miles.

NROL-37 is being launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

Reports indicate it may be one of the largest satellites ever launched, weigh some 17,000 pounds and may deploy an antenna over 300 feet wide for eavesdropping purposes.

Delta 4 Heavy carrying NROL-37 spy satellite awaits launch from Space Launch Complex-37 at Cape Canaveral Air Force.  Credit: Lane Herman
Delta 4 Heavy carrying NROL-37 spy satellite awaits launch from Space Launch Complex-37 at Cape Canaveral Air Force. Credit: Lane Herman

Seeing a Delta 4 Heavy soar to space is a rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Each first stage CBC is powered by an upgraded RS-68 engine, which generates a combined 2.1 million pounds of thrust fueled by cryogenic liquid oxygen and liquid hydrogen.

Watch this up close video tour of the Delta 4 Heavy on pad 37 after retraction of the Mobile Service Structure from my space friends at USLaunchReport.

Video Caption: ULA is launching the 2.1 million lbs thrust “Heavy” on June 11, 2016 from Pad 37 on CCAFS. Credit: USLaunchReport

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Credit: Julian Leek
Credit: Julian Leek

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 10/11: “ULA Delta 4 Heavy spy satellite, SpaceX, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016.  Credit: Ken Kremer/kenkremer.com
The Delta 4 Heavy carrying NROL-37 clandestine intelligence satellite reflecting in the pond around Space Launch Complex-37 at Cape Canaveral Air Force Station prior to planned launch on June 11, 2016. Credit: Ken Kremer/kenkremer.com
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m.  EDT.  Broadcast starts at 1:39 p.m. EDT  Watch the live webcast:  http://bit.ly/div_nrol37
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m. EDT. Broadcast starts at 1:39 p.m. EDT Watch the live webcast: http://bit.ly/div_nrol37

Mysterious Greek Device Found To Be Astronomical Computer

The Antikythera Mechanism may be the world's oldest computer. Image: By Marsyas CC BY 2.5
The Antikythera Mechanism may be the world's oldest computer. Image: By Marsyas CC BY 2.5

Thanks to a decade worth of high-tech imaging, the use of the ancient device called the Antikythera Mechanism can now be confirmed. The device, which was discovered over a century ago in an ancient shipwreck near the Greek island of Antikythera, was used as an astronomical computer.

Archaeologists long suspected that the device was connected to astronomy, but most of the writing on the instrument was indecipherable, which left some question. But a thorough, decade long effort using high-tech scanning methods has revealed much more of the text on the instrument.

The Antikythera Mechanism has about 14,000 characters of text on its mangled, time-weary body. Since its discovery over 100 years ago, very little of that text was readable, only a few hundred characters. It hinted at astronomical use, but detail remained frustratingly out of reach.

Now, the team behind this effort confirms that the mechanism was an astronomical calendar. It showed the position of the planets, the position of the Sun and Moon in the zodiac, the phases of the Moon, and it also predicted eclipses.

According to the team, it was like a teaching tool, or a kind of philosopher’s guide to the galaxy.

A 2007 recreation of the Antikythera Mechanism. Image: I, Mogi, CC BY 2.5
A 2007 recreation of the Antikythera Mechanism. Image: I, Mogi, CC BY 2.5

The characters were engraved on the front and back sections of the device, and on the inside covers. Some of the writing was very small, only about 1.2 mm (1/20th of an inch) tall. The device itself was about the size of an office box file. It was contained in a wooden box, and was operated with a handle crank.

At the time that it was found, the device was largely an afterthought. The real find at the time was luxury glassware and ceramics, and statues made of bronze and marble found at the shipwreck by sponge divers. But the device attracted attention over the years as different scholars hypothesized what the mechanism was for and how the gears worked.

Professor Mike Edmunds, of Cardiff University, is the Chair of the Antikythera Mechanism Research Project. He said, “This device is just extraordinary, the only thing of its kind. The design is beautiful, the astronomy is exactly right. The way the mechanics are designed just makes your jaw drop. Whoever has done this has done it extremely carefully.”

In fact, a device of this complexity did not appear anywhere for another thousand years.

The device itself is incomplete. The fragments that were found came from a shipwreck discovered in 1901. That ship was a mid-1st century BC ship, a large one for its time at 40 meters (130 ft) long. It’s hoped that additional fragments of the device can be found by architects visiting the original shipwreck. But event though it’s incomplete, most of the inscriptions are there, as are 20 gears that displayed planets.

According to the team responsible for imaging the text on the device, almost all of the text on the device’s 82 fragments has been deciphered. It remains to be seen if any other surviving fragments, if found, will contain more text, and if that text will shed any more light on this remarkable device.

Mars Stink To Be Duplicated For Earthbound Humans

Thanks to the rovers Spirit, Opportunity, and Curiosity, everyone knows what Mars looks like. But what does it smell like? Image: NASA/JPL-Caltech/MSSS
Thanks to the rovers Spirit, Opportunity, and Curiosity, everyone knows what Mars looks like. But what does it smell like? Image: NASA/JPL-Caltech/MSSS

Intellectual curiosity is a great gift. It’s fulfilling to ponder the great questions of existence: Will the Universe die of heat death after it’s expanded for billions and billions (and billions) more years? Is there something outside of our Universe? What’s on the other side of a black hole?…and…What does Mars smell like?

Seriously.

What may seem to be a frivolous question at first is actually quite interesting once your intellectual curiosity is engaged. The Martian atmosphere itself is much different than Earth’s. Our various robotic visitors to Mars have revealed an atmosphere rich in carbon dioxide (96%). Not much to smell there. But the surface of Mars is also much different than Earth, and contains sulfur, acids, magnesium, iron and chlorine compounds. What might that smell like?

We know that odours have a powerful effect on memory. How might colonists respond to an odour so different from what they’re used to? How might they respond to the odour of Mars once they’ve returned to Earth after a Mars mission? Recreating the smell of Mars for returning colonists might yield interesting results.

The olfactory nerve has a powerful connection to areas of the brain involved in arousal and attention. Can this connection be exploited to help Martian colonists? Image: Patrick J. Lynch CC BY 2.5
The olfactory nerve has a powerful connection to areas of the brain involved in arousal and attention. Can this connection be exploited to help Martian colonists? Image: Patrick J. Lynch CC BY 2.5

Obviously, colonists wouldn’t be breathing the Martian atmosphere. But some essence of Mars would be present in their living quarters, most likely.

After walking on the Moon, Apollo astronauts noticed that they had tracked some Moon dust back into the lander with them. When they removed their helmets, they were able to smell the Moon: a spent gunpowder smell, or a wet ash smell like a campfire that had been put out. The same thing may happen on Mars, no matter how careful people are.

The International Space Station (ISS) has its own particular smell. According to NASA astronaut Don Pettit, the ISS smells like a combined machine shop/engine room/laboratory. But the ISS isn’t a colony, and it isn’t exposed to other worlds. Everything astronauts can smell inside the ISS they can smell back on Earth.

Mars is different. Not just the smell, but because it’s so far away. In the ISS, astronauts can look down and see Earth whenever they want. They can see their country of origin, and see familiar geography. On Mars, none of that is possible. Martians will be dealing with extreme isolation.

How this isolation might affect people spending long periods of time on Mars is an intriguing and important question. And how odors play a part in this is likewise intriguing.

The effects of social isolation are well-understood. It can lead to depression, insomnia, anxiety, fatigue, boredom and emotional instability. These are garden variety problems that everyone faces at some point, but added all together they’re a potent mix that could produce serious mental illness.

Add to that the fact that Martian colonists won’t even be able to see Earth, let alone the fact of the shrunken, pale Sun, and suddenly the psychological burden of colonizing Mars comes into sharper focus. It’ll take a multi-pronged approach to help colonists cope with all of this.

Part of this approach may involve recreating the smell of Mars and exposing colonists to it during their pre-colonization training. And thanks to a technology called “Headspace“, it may be possible to recreate the smell of Mars here on Earth. Spectroscopic measurements of the Martian atmosphere could be relayed back to Earth and the Martian aroma could be recreated in a lab.

Perhaps the smell of Mars can be used prior to departure to help inoculate colonists to some of the hazards of Martian isolation.

Who knows for sure? There may be an interesting revelation hidden in the smell of Mars. How that smell could be used to prepare colonists for their time on Mars, and how returning astronauts respond to the smell of Mars, recreated for them back on Earth, could tell us something important about how our brains work.

Intellectual curiosity says its worth pondering.

The Relaunch Is On Like Donkey Kong

The Falcon9 main stage landing on its drone ship. Image: SpaceX / Public Domain Image
The Falcon9 main stage landing on its drone ship. Image: SpaceX / Public Domain Image

The age of full-blown reusable rockets is coming another step closer. SpaceX, the private company owned by PayPal founder Elon Musk, has always strove toward reusable rockets. So far, they’ve successfully landed and recovered rockets, but they haven’t actually reused one yet.

In a recent tweet, Musk said he hopes to re-launch all four of his landed rockets this Fall. Initially, he had hoped for a June re-launch, but rocketry and space travel being what it is, a delay is understandable. Still, that’s a seven month turn-around, which seems rather lengthy. SpaceX hopes that eventually it will only take a few weeks reuse a rocket.

SpaceX's four rockets in the hangar. Image: SpaceX
SpaceX’s four rockets in the hangar. Image: SpaceX

If successful, this will really change the nature of space travel/exploration/colonisation. The cost of putting payloads into orbit will be lowered dramatically. Who knows? Maybe the lower cost will trickle down to us consumers somehow.

It’s been reported that the first reuse flights will likely be Low Earth Orbit (LEO) flights. LEO’s have less complicated flight profiles, so this makes sense. There’s no official word on payloads for these flights yet, though companies like SES and Iridium are probably keenly interested.

It seems like SpaceX is always in the news lately. The pending re-launch of the Falcon 9 is almost overshadowed by other news from SpaceX: the launching of the Falcon Heavy. The Falcon Heavy will be the most powerful rocket, and its first launch is scheduled for December 2016.

An artist's drawing of the Falcon Heavy. Credit: SpaceX
An artist’s drawing of the Falcon Heavy. Credit: SpaceX

Are There Antimatter Galaxies?

Are There Antimatter Galaxies?

One of the biggest mysteries in astronomy is the question, where did all the antimatter go? Shortly after the Big Bang, there were almost equal amounts of matter and antimatter. I say almost, because there was a tiny bit more matter, really. And after the matter and antimatter crashed into each other and annihilated, we were left with all the matter we see in the Universe.

You, and everything you know is just a mathematical remainder, left over from the great division of the Universe’s first day.

We did a whole article on this mystery, so I won’t get into it too deeply.

But is it possible that the antimatter didn’t actually go anywhere? That it’s all still there in the Universe, floating in galaxies of antimatter, made up of antimatter stars, surrounded by antimatter planets, filled with antimatter aliens?

Aliens who are friendly and wonderful in every way, except if we hugged, we’d annihilate and detonate with the energy of gigatons of TNT. It’s sort of tragic, really.

If those antimatter galaxies are out there, could we detect them and communicate with those aliens?

First, a quick recap on antimatter.

Antimatter is just like matter in almost every way. Atoms have same atomic mass and the exact same properties, it’s just that all the charges are reversed. Antielectrons have a positive charge, antihydrogen is made up of an antiproton and a positron (instead of a proton and an electron).

It turns out this reversal of charge causes regular matter and antimatter to annihilate when they make contact, converting all their mass into pure energy when they come together.

We can make antimatter in the laboratory with particle accelerators, and there are natural sources of the stuff. For example, when a neutron star or black hole consumes a star, it can spew out particles of antimatter.

In fact, astronomers have detected vast clouds of antimatter in our own Milky Way, generated largely by black holes and neutron stars grinding up their binary companions.

Wyoming Milky Way set. Credit and copyright: Randy Halverson.
Wyoming Milky Way set. Credit and copyright: Randy Halverson.

But our galaxy is mostly made up of regular matter. This antimatter is detectable because it’s constantly crashing into the gas, dust, planets and stars that make up the Milky Way. This stuff can’t get very far without hitting anything and detonating.

Now, back to the original question, could you have an entire galaxy made up of antimatter? In theory, yes, it would behave just like a regular galaxy. As long as there wasn’t any matter to interact with.

And that’s the problem. If these galaxies were out there, we’d see them interacting with the regular matter surrounding them. They would be blasting out radiation from all the annihilations from all the regular matter gas, dust, stars and planets wandering into an antimatter minefield.

Astronomers don’t see this as far as they look, just the regular, quiet and calm matter out to the edge of the observable Universe.

That doesn’t make it completely impossible, though, there could be galaxies of antimatter as long as they’re completely cut off from regular matter.

But even those would be detectable by the supernova explosions within them. A normally matter supernova generates fast moving neutrinos, while an antimatter supernova would generate a different collection of particles. This would be a dead giveaway.

There’s one open question about antimatter that might make this a deeper mystery. Scientists think that antimatter, like regular matter, has regular gravity. Matter and antimatter galaxies would be attracted to each other, encouraging annihilation.

But scientists don’t actually know this definitively yet. It’s possible that antimatter has antigravity. An atom of antihydrogen might actually fall upwards, accelerating away from the center of the Earth.

alpha_image_resized_for_web
The ALPHA experiment, one of five experiments that are studying antimatter at CERN Credit: Maximilien Brice/CERN

Physicists at CERN have been generating antimatter particles, and trying to detect if they’re falling downward or up.

If that was the case, then antimatter galaxies might be able to repel particles of regular matter, preventing the annihilation, and the detection.

If you were hoping there are antimatter lurking out there, hoarding all that precious future energy, I’m sorry to say, but astronomers have looked and they haven’t found it. Just like the socks in your dryer, we may never discover where it all went.

Surveillance Satellite Set for June 9 Launch on Mighty Delta 4 Heavy

Sun rises behind Delta 4 Heavy launch of NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com
Sun rises behind Delta 4 Heavy launch of  NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37.  Credit: Ken Kremer/kenkremer.com
Sun rises behind Delta 4 Heavy launch of NROL-15 for the NRO on June 29, 2012 from Cape Canaveral Air Force Station at Space Launch Complex-37. Credit: Ken Kremer/kenkremer.com

CAPE CANAVERAL, FL — A classified surveillance satellite set to fortify the reconnaissance capabilities of America’s spy masters is now scheduled to launch this Thursday afternoon, June 9, atop America’s most powerful rocket – the Delta 4 Heavy.

Lift off of the United Launch Alliance (ULA) Delta 4 Heavy carrying the classified NROL-37 spy satellite for the National Reconnaissance Office (NRO) on Thursday, June 9 is slated for 1:59 p.m. EDT from Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida.

This follows a four day delay from June 5 to deal with a last minute and unspecified payload issue.

“Spacecraft, rocket and support systems are ready!” tweeted the NRO.

Although almost everything about the clandestine payload, its mission, purpose and goals are classified top secret, it is certainly vital to America’s national security.

We do know that NROL-37 will be launched for the NRO on an intelligence gathering mission in support of US national defense.

The possible roles for the reconnaissance payload include signals intelligence, eavesdropping, imaging and spectroscopic observations, early missile warnings and much more.

The NRO runs a vast fleet of powerful orbital assets hosting a multitude of the most advanced, wide ranging and top secret capabilities.

The payload is named NROL-37 and will be carried to an undisclosed orbit, possibly geostationary, by the triple barreled ULA Delta 4 Heavy rocket – currently the largest and most powerful rocket in the world.

It is manufactured and launched by ULA as part of the Delta rocket family. This includes the Delta 4 Medium which can launch with strap on solid rocket boosters. ULA also builds and launches the Atlas V rocket family.

Delta 4 Heavy cutaway diagram. Credit: ULA
Delta 4 Heavy cutaway diagram. Credit: ULA

To date nine NRO payloads have flown on Delta 4 rockets. NROL-37 will be the 32nd Delta IV mission since the vehicle’s inaugural launch.

The NRO was formed in response to the Soviet launch of Sputnik and secretly created on September 6, 1961.

“The purpose is overseeing all satellite and overflight reconnaissance projects whether overt or covert. The existence of the organization is no longer classified today, but we’re still pressing to perform the functions necessary to keep American citizens safe,” according to the official NRO website.

Precisely because this is a launch of the mighty triple barreled Delta 4 Heavy, the view all around is sure to be spectacular and is highly recommended – in case you are in the Florida Space Coast area or surrounding regions.

One thing for sure is the top secret payload is huge and weighty since it requires the heaviest of the heavies to blast off.

Watch this ULA video showing the mating of the classified reconnaissance payload to the rocket.

Video Caption: The NROL-37 payload is mated to a Delta IV Heavy rocket inside the Mobile Service Tower or MST at Cape Canaveral Air Force Station’s Space Launch Complex-37. Credit: ULA

Another unclassified aspect we know about this flight is that the weather forecast is rather iffy.

The official Air Forces prognosis calls for only a 40% chance of favorable weather conditions.

The primary concerns are for Anvil Clouds, Cumulus Clouds and Lightning.

In case of a scrub for any reason related to technical or weather issues, the next launch opportunity is 48 hours later on Saturday. June 11.

The weather odds rise significantly to an 80% chance of favorable weather conditions on June 11.

Somewhat surprisingly ULA has just announced the launch time – which is planned for 1:59 p.m. EDT (1759 GMT).

And you can even watch a ULA broadcast which starts 20 minutes prior to the given launch time at 1:39 p.m. EDT.

Webcast link: http://bit.ly/div_nrol37

The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m.  EDT.  Broadcast starts at 1:39 p.m. EDT  Watch the live webcast:  http://bit.ly/div_nrol37
The June 9 launch of the ULA Delta 4 Heavy carrying the classified NROL-37 spy satellite is planned for 1:59 p.m. EDT. Broadcast starts at 1:39 p.m. EDT Watch the live webcast: http://bit.ly/div_nrol37

Since this is a national security launch, the exact launch time is actually classified and could easily occur later than 1:59 p.m.

The launch period extends until 6:30 p.m. EDT (2230 GMT). The actual launch window is also classified and somewhere within the launch period.

Seeing a Delta 4 Heavy soar to space is a rare treat since they launch infrequently.

The last of these to launch from the Cape was for NASA’s inaugural test flight of the Orion crew capsule on the EFT-1 launch in Dec. 5, 2014. No other rocket was powerful enough.

Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014.   Credit: Ken Kremer - kenkremer.com
Inaugural Orion crew module launches at 7:05 a.m. on Delta 4 Heavy Booster from pad 37 at Cape Canaveral on Dec. 5, 2014. Credit: Ken Kremer – kenkremer.com

The Delta IV Heavy employs three Common Core Boosters (CBCs). Two serve as strap-on liquid rocket boosters (LRBs) to augment the first-stage CBC and 5-m-diameter payload fairing housing the payload.

Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37.   Credit: Ken Kremer/kenkremer.com
Side view shows trio of Common Booster Cores (CBCs) with RS-68 engines powering the Delta IV Heavy rocket resting horizontally in ULA’s HIF processing facility at Cape Canaveral that will launch NASA’s maiden Orion on the EFT-1 mission in December 2014 from Launch Complex 37. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral Air Force Station and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about ULA Atlas and Delta rockets, SpaceX Falcon 9 rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA Delta 4 Heavy spy satellite, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

These are the 40 Who Might Die on Mars

Mars. A great place to die. Image: NASA, J. Bell (Cornell U.) and M. Wolff (SSI)
Mars. A great place to die. Image: NASA, J. Bell (Cornell U.) and M. Wolff (SSI)

If there were an Olympics for ambition, the Dutch-based non-profit organization Mars One would surely be on the podium.

If you haven’t heard of them, (and we expect you have,) they are the group that plans to send colonists to Mars on a one-way trip, starting in the year 2026. Only 24 colonists will be selected for the dubious distinction of dying on Mars, but that hasn’t stopped 200,000 people from 140 countries from signing up and going through the selection process.

There are 100 people who have made it through the selection process so far. Another five day testing phase will knock that number down to 40, out of which 24 will be chosen as the lucky ones. The latest testing will start soon. According to Mars One, most of their testing is the same as the testing that NASA does on their astronauts.

At least some of the candidates have serious backgrounds. One, Zachary Gallegos, is a geologist and field chemist who works with the Mars Science Laboratory. Here’s what he has to say:

All of this testing and narrowing down is partially funded by a reality show, which adds to the sort of carnival atmosphere around the whole thing, and makes it hard to take it seriously.

But, some people are serious about it.

In a statement, Mars One commented on the upcoming testing:

“Over the course of five days, candidates will face various challenges. It will be the first time all candidates will meet in person and demonstrate their capabilities as a team.”

“In this round the candidates will play an active role in decision making/group formation. Mars One has asked the candidates to group themselves into teams with the people they believe they can work well with.”

A human presence on Mars is a great idea, of course. But it seems fatalistic, and pointless, to choose to die there. And rest assured, these colonists are meant to die there.

Mars One addresses this kind of thinking on their website:

“For anyone not interested to go to Mars, moving permanently to Mars would be the worst kind of punishment. Most people would give an arm and a leg to be allowed to stay on Earth so it is often difficult for them to understand why anyone would want to go.”

“Yet many people apply for Mars One’s mission and these are the people who dream about someday living on Mars. They would give up anything for the opportunity and it is often difficult for them to understand why anyone would not want to go.”

Fair enough. Maybe these are the types of people who really contribute in driving humanity forward.

NASA is planning to get humans to Mars in the 2030s, and Elon Musk says he’ll do it even earlier. But they plan to bring people back. If they can provide return trips, it seems a wasteful sacrifice to die on Mars when they don’t have to. Couldn’t successful colonists contribute a lot to humanity if they were to return to Earth after their successful missions?

Mars One seems to gloss over a lot of problems. Here’s some more from their website:

A new group of four astronauts will land on Mars every two years, steadily increasing the settlement’s size. Eventually, a living unit will be built from local materials, large enough to grow trees.

As more astronauts arrive, the creativity applied to settlement expansion will certainly give way to ideas and innovation that cannot be conceived now. But it can be expected that the human spirit will continue to persevere, and even thrive in this challenging environment.

“A living unit will be built from local materials, large enough to grow trees.” A simple sentence, which obscures so much complexity. Will they mine and refine iron ore? What do they have in mind?

I don’t want to be a Debbie Downer about it. I love the spirit behind the whole thing. But it takes so much rigorous planning and execution to establish a colony on Mars. And money. How will it all work?

In the end, the whole thing is a long shot. Mars One says they have visited and talked to engineering and technological suppliers globally, and that their timeline and planning is based on this feedback. For example, they say they intend to use a Falcon Heavy rocket from SpaceX to launch their ship. But so much detail is left out. The Falcon Heavy doesn’t even exist yet, and Mars One has no control or input into the rocket’s development.

An artist's illustration of the Falcon Heavy.  Will it send Mars One colonists to Mars?Image: SpaceX
An artist’s illustration of the Falcon Heavy. Will it send Mars One colonists to Mars?Image: SpaceX

Take a look at the two sentences describing how they will communicate with Earth:

“The communications system will consist of two communications satellites and Earth ground stations. It will transmit data from Mars to Earth and back.”

Does this type of brevity inspire confidence?

For at least 200,000 people, the answer is “yes.”

Metropolitan Milky Way

JanikAlheit-CPTMilkyPano
A breathtakingly rare view of the southern hemisphere Milky Way above a major city - a 42-panel panorama. Photo: Janik Alheit

This article was written by contributing author Janik Alheit, and is used by permission from the original at PhotographingSpace.com.

When it comes to my style of photography, preparation is a key element in getting the shot I want.

On this specific day, we were actually planning on only shooting the low Atlantic clouds coming into the city of Cape Town. This in itself takes a lot of preparation as we had to keep a close eye on the weather forecasts for weeks using Yr.no, and the conditions are still unpredictable at best even with the latest weather forecasting technology.

We set out with cameras and camping gear with the purpose of setting up camp high up on Table Mountain so as to get a clear view over the city. The hike is extremely challenging at night, especially with a 15kg backpack on your back! We reached our campsite at about 11pm, and then started setting up our cameras for the low clouds predicted to move into the city at about 3am the next morning. For the next 2 hours or so we scouted for the best locations and compositions, and then tried to get a few hours of sleep in before the clouds arrived.

At about 3am I was woken up by fellow photographer Brendon Wainwright. I realised that he had been up all night shooting timelapses, and getting pretty impressive astro shots even though we were in the middle of the city. I noticed that the clouds had rolled in a bit earlier than predicted and had created a thick blanket over the city, which was acting as a natural light pollution filter.

I looked up at the skies and for the first time in my life I was able to see the core of the Milky Way in the middle of the city! This is when everything changed, the mission immediately became an astrophotography mission, as these kind of conditions are extremely rare in the city.

How to Photograph the Milky Way
Learn how to shoot the Milky Way at PhotographingSpace.com!

Composition

After shooting the city and clouds for a while, I turned my focus to the Milky Way. I knew I was only going to have this one opportunity to capture an arching Milky Way over a city covered with clouds, so I had to work fast to get the perfect composition before the clouds changed or faded away.

I set my tripod on top of a large rock that gave me a bit of extra height so that I could get as much of the city lights in the shot as possible. The idea I had in my mind was to shoot a panorama from the center of the city to the Twelve Apostles Mountains in the southwest. This was a pretty large area to cover, plus the Milky Way was pretty much straight above us which meant I had to shoot a massive field of view in order to get both the city and the Milky Way.

The final hurdle was to get myself into the shot, which meant that I had to stand on a 200m high sheer cliff edge! Luckily this was only necessary for one frame in the entire panorama.

Gear and settings

I usually shoot with a Canon 70D with an 18mm f/3.5 lens and a Hahnel Triad 40Lite tripod. This particular night I forgot to bring a spare battery for my Canon and by the time I wanted to shoot this photo, my one battery had already died!

Luckily I had a backup camera with me, an Olympus OMD EM10 mirrorless camera. I had no choice but to use this camera for the shot. The lens on that camera was an Olympus M.Zuiko 14-42mm f/3.5 kit lens, which was not ideal, but I just had to make it work.

I think this photo is a testament to the fact that your gear is not nearly as important as your technique and knowledge of your surroundings and your camera.

I started off by shooting the first horizontal line of photos, in landscape orientation, to form the bottom edge of the final stitched photo. From there I ended up shooting 6 rows of 7 photos each in order to capture the whole view I wanted. This gave me 42 photos in total.

For the most part, my settings were 25 seconds, f/3.5, ISO 2000, with the ISO dropped on a few of the pictures where the city light was too bright. I shot all the photos in raw as to get as much data out of each frame as possible.

Editing

Astrophotography is all about the editing techniques.

In this scenario I had to stitch 42 photos into one photo. Normally I would just use the built-in function in Lightroom, but in this case I had to use software called PTGui Pro, which is made for stitching difficult panoramas. This software enables me to choose control points on the overlapping images in order to line up the photos perfectly.

After creating the panorama in PTGui Pro, I exported it as a TIFF file and then imported that file into Lightroom again. Keep in mind that this one file is now 3GB as it is made up of 42 RAW files!

In Lightroom I went through my normal workflow to bring out the detail in the Milky Way by boosting the highlights a bit, adding contrast, a bit of clarity, and bringing out some shadows in the landscape. The most difficult part was to clear up the distortion that was caused by the faint clouds in the sky between individual images. Unfortunately it is almost impossible to blend so many images together perfectly when you have faint clouds in the sky that form and disappear within minutes, but I think I did the best job I could to even out the bad areas.

JanikAlheit-CPTMilkyPano
Photo: Janik Alheit

A special event

After the final touches were made and the photo was complete, I realized that I had captured something really unique. It’s not every day that you see low clouds hanging over the city, and you almost never see the Milky Way so bright above the city, and I managed to capture both in one image!

The response to the image after posting it to my Instagram account was extremely overwhelming. I got people from all over the world wanting to purchase the image and it got shared hundreds of time across all social media.

It just shows you that planning and dedication does pay off!

Recovered SpaceX Falcon 9 ‘Lifts Off’ 2nd Time After ‘Baby Made it Home!” – Gallery

With US flag flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at midday through Port Canaveral. The rocket successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later. Credit: Ken Kremer/kenkremer.com
With US flag flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at  midday through Port Canaveral. The rocket  successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later.  Credit: Ken Kremer/kenkremer.com
With US flag proudly flying in background below, the base of recovered SpaceX Falcon 9 booster with 4 deployed landing legs and 9 Merlin 1 D engines is lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 after sailing at midday through Port Canaveral. The rocket successfully launched Thaicom-8 satellite on May 27, 2016 from Cape Canaveral Air Force Station, Fl and landed on sea based platform minutes later. Credit: Ken Kremer/kenkremer.com

PORT CANAVERAL, FL – The spent SpaceX Falcon 9 first stage booster that sped to space and back and landed safely at sea, ‘lifted off’ for a second time so to speak after CEO Elon Musk’s “Baby Made it Home” to her home port around lunchtime on June 2 – as I witnessed and reported here for Universe Today.

“Yay, baby made it home,” SpaceX CEO and billionaire founder Elon Musk exuberantly tweeted with a link to my port arrival story and photos showing the tilted booster radiantly floating atop the droneship landing platform.

Photos above and below from myself and colleagues capture Falcon’s 2nd ‘lift off’ – this time at dusk on June 2, via crane power as workers hoisted it off its ocean landing platform – with an American flag flying proudly below – onto a ground based work platform to carry out initial processing.

3 image sequence shows SpaceX Falcon 9 ‘lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 and moved to ground processing cradle at Port Canaveral, FL following May 27, 2016 launch/landing to deliver Thaicom-8 satellite to orbit. Credit: Ken Kremer/kenkremer.com
3 image sequence shows SpaceX Falcon 9 ‘lifted off ‘OCISLY’ droneship barge at dusk on June 2, 2016 and moved to ground processing cradle at Port Canaveral, FL following May 27, 2016 launch/landing to deliver Thaicom-8 satellite to orbit. Credit: Ken Kremer/kenkremer.com

The booster triumphantly entered the waterway into Port Canaveral, Fl by way of the ocean mouth at Jetty Park pier at about 11: 45 a.m. on June 2 under clear blue skies.

It continued sailing serenely along the Port Canaveral channel – towed behind the Elsbeth III tugboat – making a picture perfect tour for lucky spectators for another 30 minutes or so until docking at the SpaceX ground processing facility.

All in all it was quite appropriately an ‘otherworldly’ scene reminiscent of a great scifi movie.

Watch this video from my photojournalist colleague Jeff Seibert.

Video caption: The SpaceX F9 booster from the Thaicom-8 launch returns to Cape Canaveral on June 2, 2016 after completing an at sea landing on the OCISLY drone ship 6 days earlier. A hard landing caused a leg to activate a crush structure and it is tilting about 4 degrees. That is half the booster tilt angle that Elon Musk expected should be recoverable. Credit: Jeff Seibert

The beaming 156-foot-tall Falcon 9 booster had propulsively landed six days earlier atop the specially designed SpaceX ‘droneship’ named “Of Course I Still Love You” or “OCISLY” less than 9 minutes after the spectacular May 27 blastoff.

The Falcon 9 was leaning some 5 degrees or so on the droneship upon which it had landed on May 27 while it was stationed approximately 420 miles (680 kilometers) off shore and east of Cape Canaveral, Florida, surrounded by the vastness of the Atlantic Ocean.

Recovered SpaceX Falcon 9 sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss
Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss

After docking, SpaceX workers then spent the next few hours carefully maneuvering and attaching a pyramidal shaped metal hoisting cap by crane to the top of the 15 story tall first stage – as it was firmly secured to the deck of the droneship via multiple tie downs.

It was a delicately choreographed and cautiously carried out operation, complicated by the fact that this used, returned booster was tilted. The prior two sea landed Falcon 9 boosters landed perfectly upright in April and May.

Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss
Recovered SpaceX Falcon 9 from Thaicom 8 mission sails into Port Canaveral atop droneship on June 2, 2016. Credit: John Krauss

Indeed a pair of technicians had to ride a cherry picker lift to the very top to help fasten the cap securely in place as it was slowly lowered in the late afternoon.

Workers then spent several more hours undoing and removing the tiedowns to the droneship deck, one by one.

Finally and with no fanfare the ‘GO’ command was suddenly given.

At dusk, Falcons 2nd ‘ascent’ began at around 8 p.m. The small group of us patiently watching and waiting all day from across the channel had no warning or advance notice. My guestimate is Falcon rose perhaps 30 to 40 feet.

It was craned over to the right and lowered onto the waiting ground based retention work platform. Altogether the whole movement took some 10 minutes.

in Port Canaveral, FL prior to craning it to ground processing cradle on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
in Port Canaveral, FL prior to craning it to ground processing cradle on June 2, 2016. Credit: Ken Kremer/kenkremer.com

The SpaceX Falcon 9 began its rapid journey to space and back roaring to life at 5:39 p.m. EDT last Friday, May 27, from Space Launch Complex-40 at Cape Canaveral Air Force Station, FL, ascending into sky blue sunshine state skies.

The Falcon 9 was carrying the Thaicom-8 telecommunications satellite to orbit as its primary goal for the commercial launch from a paying customer.

It roared to life with 1.5 million pounds of thrust from the first stage Merlin 1 D engines and successfully propelled the 7000 pound (3,100 kilograms) commercial Thai communications satellite to a Geostationary Transfer Orbit (GTO).

Landing on the droneship was a secondary goal of SpaceX’s visionary CEO and founder Elon Musk.

It was leaning due to the high speed reentry and a touchdown landing speed near the maximum sustainable by the design.

“Rocket landing speed was close to design max & used up contingency crush core, hence back & forth motion,” tweeted SpaceX CEO Elon Musk.

“Prob ok, but some risk of tipping.”

That tilting added significant extra technical efforts by the SpaceX workers to stabilize it at sea and bring it back safely and not tip over calamitously during the six day long sea voyage back to home port.

““Rocket back at port after careful ocean transit. Leaning back due to crush core being used up in landing legs,” SpaceX explained.

What is the crush core?

“Crush core is aluminum honeycomb for energy absorption in the telescoping actuator. Easy to replace (if Falcon makes it back to port),” Musk tweeted during the voyage home.

The landing leg design follows up and improves upon on what was used and learned from NASA’s Apollo lunar landers in the 1960s and 1970s.

“Falcon’s landing leg crush core absorbs energy from impact on touchdown. Here’s what it looked like on Apollo lander,” noted SpaceX

Check out this graphic tweeted by SpaceX.

Falcon's landing leg crush core absorbs energy from impact on touchdown. Here's what it looked like on Apollo lander. Credit: SpaceX
Falcon’s landing leg crush core absorbs energy from impact on touchdown. Here’s what it looked like on Apollo lander. Credit: SpaceX

Technicians started removing the quartet of landing legs on Friday. I observed the first one being detached late Friday, June 3.

Recovered SpaceX Falcon 9 from Thaicom-8 mission after craning off ‘OCISLY’ droneship to ground processing cradle at Port Canaveral, FL.  Workers had removed the first of four landing legs in this view from June 3, 2016. Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 from Thaicom-8 mission after craning off ‘OCISLY’ droneship to ground processing cradle at Port Canaveral, FL. Workers had removed the first of four landing legs in this view from June 3, 2016. Note: NASA’s VAB in background. Credit: Ken Kremer/kenkremer.com

The booster was rotated horizontally after all the legs were removed and transported back to the SpaceX processing hangar at the Kennedy Space Center at Launch Complex 39A.

The three prior landed boosters were all moved to 39 A for thorough inspection, analysis and engine testing. One will be refurbished and recycled for reuse.

Video caption: Thaicom 8 booster is lifted from autounomous drone ship to dry land for transport on 2 June 2016. Time Lapse. Credit: USLaunchReport

Later this year, SpaceX hopes to relaunch one of the recovered first stage boosters.

The SpaceX rockets and recovery technology are all being developed so they will one day lead to establishing a ‘City on Mars’ – according to the SpaceX’s visionary CEO and founder Elon Musk.

Musk aims to radically slash the cost of launching future rockets by recycling them and using them to launch new payloads for new paying customers.

Musk hopes to launch humans to Mars by the mid-2020s.

Technicians work to attach hoisting cap to top of used SpaceX Falcon 9 from Thaicom-8 mission that was secured atop ‘OCISLY’ droneship in Port Canaveral, FL prior to craning it over to ground processing cradle on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Technicians work to attach hoisting cap to top of used SpaceX Falcon 9 from Thaicom-8 mission that was secured atop ‘OCISLY’ droneship in Port Canaveral, FL prior to craning it over to ground processing cradle on June 2, 2016. Credit: Ken Kremer/kenkremer.com

Watch for Ken’s continuing on site reports direct from Cape Canaveral and the SpaceX launch pad.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX Falcon 9 rocket, ULA Atlas rocket, Orbital ATK Cygnus, ISS, Boeing, Space Taxis, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

June 8/9: “SpaceX, ULA, SLS, Orion, Commercial crew, Curiosity explores Mars, Pluto and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Recovered SpaceX Falcon 9 basks in nighttime glow after arriving into Port Canaveral on June 2, 2016. Credit: Ken Kremer/kenkremer.com
4 natural made pelicans and a manmade SpaceX Falcon 9 with 4 landing legs at Port Canaveral, FL on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
4 natural made pelicans and a manmade SpaceX Falcon 9 with 4 landing legs at Port Canaveral, FL on June 2, 2016. Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL.  1st stage booster landed safely at sea minutes later.  Credit: Ken Kremer/kenkremer.com
Upgraded SpaceX Falcon 9 blasts off with Thaicom-8 communications satellite on May 27, 2016 from Space Launch Complex 40 at Cape Canaveral Air Force Station, FL. 1st stage booster landed safely at sea minutes later. Credit: Ken Kremer/kenkremer.com
Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek
Tow boat passing in front of the used SpaceX rocket waiting offshore. Credit: Julian Leek
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016.  Credit: Ken Kremer/kenkremer.com
Proud fisherman displays ultra fresh ‘catch of the day’ as ultra rare species of SpaceX Falcon 9 rocket floats by simultaneously on barge in Port Canaveral, Fl, on June 2, 2016. Credit: Ken Kremer/kenkremer.com