Radiating Exoplanet Discovered in “Perfect Tidal Storm”

Artist’s illustration of HD 104067 b, which is the outermost exoplanet in the HD 104067 system, and responsible for potentially causing massive tidal energy on the innermost exoplanet candidate, TOI-6713.01. (Credit: NASA/JPL-Caltech)

Can tidal forces cause an exoplanet’s surface to radiate heat? This is what a recent study accepted to The Astronomical Journal hopes to address as a team of international researchers used data collected from ground-based instruments to confirm the existence of a second exoplanet residing within the exoplanetary system, HD 104067, along with using NASA’s Transiting Exoplanet Survey Satellite (TESS) mission to identify an additional exoplanet candidate, as well. What’s unique about this exoplanet candidate, which orbits innermost compared to the other two, is that the tidal forces exhibited from the outer two exoplanets are potentially causing the candidates’ surface to radiate with its surface temperature reaching as high as 2,300 degrees Celsius (4,200 degrees Fahrenheit), which the researchers refer to as a “perfect tidal storm”.

Continue reading “Radiating Exoplanet Discovered in “Perfect Tidal Storm””

The Search for the Perfect Coronagraph to Find Earth 2.0

Coronagraph allowing the direct imaging of exoplanets

Studying exoplanets is made more difficult by the light from the host star. Coronagraphs are devices that block out the star light and both JWST and Nancy Grace Roman Telescope are equipped with them. Current coronagraphs are not quite capable of seeing other Earths but work is underway to push the limits of technology and even science for a new, more advanced device. A new paper explores the quantum techniques that may one day allow us to make such observations. 

Continue reading “The Search for the Perfect Coronagraph to Find Earth 2.0”

Water Vapor Found in the Atmosphere of a Small Exoplanet

Artist's impression of GJ 9827 d, which is the smallest exoplanet ever found to potentially possess water in its atmosphere. (Credit: NASA, ESA, Leah Hustak and Ralf Crawford (STScI))

A recent study published in The Astrophysucal Journal Letters discusses the detection of water within the atmosphere of GJ 9827 d, which is a Neptune-like exoplanet located approximately 97 light-years from Earth, using NASA’s Hubble Space Telescope (HST), and is the smallest exoplanet to date where water has been detected in its atmosphere. This study was conducted by an international team of researchers and holds the potential to identify exoplanets throughout the Milky Way Galaxy which possess water within their atmospheres, along with highlighting the most accurate methods to identify the water, as well.

Continue reading “Water Vapor Found in the Atmosphere of a Small Exoplanet”

Exoplanets: Why study them? What are the challenges? What can they teach us about finding life beyond Earth?

Credit: NASA/W. Stenzel

Universe Today has explored the importance of studying impact craters and planetary surfaces and what these scientific disciplines can teach us about finding life beyond Earth. We learned that impact craters are caused by massive rocks that can either create or destroy life, and planetary surfaces can help us better understand the geologic processes on other worlds, including the conditions necessary for life. Here, we will venture far beyond the confines of our solar system to the many stars that populate our Milky Way Galaxy and the worlds they orbit them, also known as exoplanets. We will discuss why astronomers study exoplanets, challenges of studying exoplanets, what exoplanets can teach us about finding life beyond Earth, and how upcoming students can pursue studying exoplanets, as well. So, why is it so important to study exoplanets?

Continue reading “Exoplanets: Why study them? What are the challenges? What can they teach us about finding life beyond Earth?”

Habitability of Planets Will Depend on Their Interiors

An illustration of the surface of the exoplanet Barnard's Star b. Image Credit: M. Kornmesser, ESA.
An illustration of the surface of the exoplanet Barnard's Star b. Image Credit: M. Kornmesser, ESA.

A lot of the headlines and discussion around the habitability of exoplanets is focused on their proximity to their star and on the presence of water. It makes sense, because those are severely limiting factors. But those planetary characteristics are really just a starting point for the habitable/not habitable discussion. What happens in a planet’s interior is also important.

Continue reading “Habitability of Planets Will Depend on Their Interiors”