Europa’s Ice Rotates at a Different Speed From its Interior. Now We May Know Why

Image of Europa taken by NASA's Juno spacecraft on Sept 29, 2022. (Credit: NASA/JPL-Caltech/Southwest Research Institute/Malin Space Science Systems)

Jupiter’s moon, Europa, contains a large ocean of salty water beneath its icy shell, some of which makes it to the surface from time to time, and this vast ocean could host life, as well. Europa was most recently observed by NASA’s Juno spacecraft, but current examinations of the moon’s internal ocean are limited to computer models and simulations produced here on Earth, as no mission is actively exploring this tiny moon orbiting Jupiter. Other than the internal water occasionally breaching the icy shell and making it to the surface, what other effects could the internal ocean have on the icy shell that encloses it?

Continue reading “Europa’s Ice Rotates at a Different Speed From its Interior. Now We May Know Why”

Europa Could be Covered in Salty Ice

Jupiter's second Galilean moon, Europa. (Credit: NASA/JPL/Galileo spacecraft)

Jupiter’s second Galilean moon, Europa, is one of the most fascinating planetary objects in our Solar System with its massive subsurface ocean that’s hypothesized to contain almost three times the volume of water as the entire Earth, which opens the possibility for life to potentially exist on this small moon. But while Europa’s interior ocean could potentially be habitable for life, its unique surface features equally draw intrigue from scientists, specifically the large red streaks that crisscross its cracked surface.

Continue reading “Europa Could be Covered in Salty Ice”

All of Jupiter's Large Moons Have Auroras

Artist's concept of aurorae on Ganymede - auroral belt shifting may indicate a subsurface saline ocean. Credit: NASA/ESA

Jupiter is well known for its spectacular aurorae, thanks in no small part to the Juno orbiter and recent images taken by the James Webb Space Telescope (JWST). Like Earth, these dazzling displays result from charged solar particles interacting with Jupiter’s magnetic field and atmosphere. Over the years, astronomers have also detected faint aurorae in the atmospheres of Jupiter’s largest moons (aka. the “Galilean Moons“). These are also the result of interaction, in this case, between Jupiter’s magnetic field and particles emanating from the moons’ atmospheres.

Detecting these faint aurorae has always been a challenge because of sunlight reflected from the moons’ surfaces completely washes out their light signatures. In a series of recent papers, a team led by the University of Boston and Caltech (with support from NASA) observed the Galilean Moons as they passed into Jupiter’s shadow. These observations revealed that Io, Europa, Ganymede, and Callisto all experience oxygen-aurorae in their atmospheres. Moreover, these aurorae are deep red and almost 15 times brighter than the familiar green patterns we see on Earth.

Continue reading “All of Jupiter's Large Moons Have Auroras”

A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

In the coming years, NASA and the European Space Agency (ESA) will send two robotic missions to explore Jupiter’s icy moon Europa. These are none other than NASA’s Europa Clipper and the ESA’s Jupiter Icy Moons Explorer (JUICE), which will launch in 2024, and 2023 (respectively). Once they arrive by the 2030s, they will study Europa’s surface with a series of flybys to determine if its interior ocean could support life. These will be the first astrobiology missions to an icy moon in the outer Solar System, collectively known as “Ocean Worlds.”

One of the many challenges for these missions is how to mine through the thick icy crusts and obtain samples from the interior ocean for analysis. According to a proposal by Dr. Theresa Benyo (a physicist and the principal investigator of the lattice confinement fusion project at NASA’s Glenn Research Center), a possible solution is to use a special reactor that relies on fission and fusion reactions. This proposal was selected for Phase I development by the NASA Innovative Advanced Concepts (NIAC) program, which includes a $12,500 grant.

Continue reading “A Hybrid Fission/Fusion Reactor Could be the Best way to get Through the ice on Europa”

Comet Impacts Could Have Brought the Raw Ingredients for Life to Europa’s Ocean

An artist's concept of a comet or asteroid impact on Jupiter's moon Europa. Credit: NASA/JPL-Caltech

Jupiter is the most-visited planet in the Solar System, thanks largely to NASA. It all started with Pioneer 10 and 11, followed by Voyager 1 and 2. Those were all flyby missions, and it wasn’t until 1996 that the Galileo spacecraft became the first to orbit the gas giant and even send a probe into its atmosphere. Then in 2016, the Juno spacecraft entered orbit around Jupiter and is still there today.

All of these missions were focused on Jupiter, but along the way, they gave us tantalizing hints of the icy moon Europa. The most impactful thing we’ve learned is that Europa, though frozen on the surface, holds an ocean under all that ice. And that warm, salty ocean might contain more water than all of Earth’s oceans combined.

Might it hold life?

Continue reading “Comet Impacts Could Have Brought the Raw Ingredients for Life to Europa’s Ocean”

Here are the High-Resolution Images of Europa Captured by Juno During its Recent Flyby

europa
Europa, as seen by Juno during its Perijove 45. Could lakes be sending geysers out from beneath its icy crust? Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill

It’s been over twenty-two years since we’ve been able to see Jupiter’s enticing moon Europa close-up. But now the Juno spacecraft has made its closest pass of Europa, sending back some amazing pictures of the icy mini-world, which likely has an ocean that contains more water than all of Earth’s oceans combined.

Observations from the spacecraft’s 45th orbit around Jupiter brought it close enough to give us some of the best views of Europa that we’ve ever had.

Continue reading “Here are the High-Resolution Images of Europa Captured by Juno During its Recent Flyby”

Mysterious Europa Gets an Extreme Closeup From NASA’s Juno Probe

Juno's view of Europa
The ridges and troughs on Europa stand out in an image from NASA's Juno orbiter. (NASA / JPL-Caltech / SwRI / MSSS / Björn Jónsson)

Over the course of a brief two-hour opportunity, NASA’s Juno spacecraft captured a rare close look at Europa, an ice-covered moon of Jupiter that’s thought to harbor a hidden ocean — and perhaps an extraterrestrial strain of marine life.

Juno has been orbiting Jupiter since 2016, but this week brought the best opportunity to look at Europa, which is the prime target for investigation by NASA’s Europa Clipper probe in the 2030s. On Sept. 29, the orbiter buzzed over the moon’s surface at a velocity in excess of 52,000 mph (23.6 km per second), and at an altitude of 352 kilometers (219 miles).

That’s as close as any spacecraft has come to Europa since the Galileo orbiter’s 218-mile flyby in 2000.

Continue reading “Mysterious Europa Gets an Extreme Closeup From NASA’s Juno Probe”

NASA’s Juno To Skim the Surface of Jupiter’s Icy Moon Europa

This next week will mark a scientifically valuable achievement for NASA’s Juno mission, as the pioneering spacecraft is slated to fly within 358 kilometers (222 miles) of Jupiter’s icy moon Europa on September 29 at 5:36 a.m. EDT (2:36 a.m. PDT) as part of its extended mission to explore the Jupiter system. A flyby this close to Europa’s surface will allow Juno to acquire some of the highest-resolution images ever taken of the icy moon. For context, the last mission to explore Europa in depth was NASA’s Galileo spacecraft, which got within 351 kilometers (218 miles) of the surface on January 3, 2000.

Continue reading “NASA’s Juno To Skim the Surface of Jupiter’s Icy Moon Europa”

This is What a Robotic Explorer Might See When it Reaches Europa’s Oceans

Mounds of snow-like ice under an ice shelf. ©Helen Glazer, 2015 from the project Walking in Antarctica.

For decades, evidence has been mounting that beneath the icy crust of Jupiter’s moon Europa, a vast ocean exists that could possibly host microbial life. As scientists prepare to send the Europa Clipper mission to orbit the Jupiter system, they are trying to learn more about the subsurface ocean and the ice that encompasses the moon.

One way to study Europa is to look at similar environments here on Earth. Scientists say that conditions found under Earth’s Antarctic ice shelf provides an analog to Europa’s subsurface ocean and can help them determine how the moon’s ice shell accretes and grows.

A new study published in the journal Astrobiology looked at a unique phenomenon in the Antarctic ocean called underwater snow. This is where ice floats upwards onto the bottom of the ice shelf and attaches in fluffy-looking mounds. This helps to replenish the ice shelf. The study infers that the same phenomenon is likely true for Jupiter’s moon, and may play a role in building and replenishing its exterior ice shell.

Continue reading “This is What a Robotic Explorer Might See When it Reaches Europa’s Oceans”

Will Europa finally answer, ‘Are we alone?’

While NASA’s much-lauded Space Launch System stands ready for its maiden flight later this month with the goal of sending astronauts back to the Moon in the next few years, our gazes once again turn to the stars as we continue to ask the question that has plagued humankind since time immemorial: Are we alone? While there are several solar system locales that we can choose from to conduct our search for life beyond Earth, to include Mars and Saturn’s moons, Titan and Enceladus, one planetary body orbiting the largest planet in the solar system has peaked the interest of scientists since the 1970s.

Continue reading “Will Europa finally answer, ‘Are we alone?’”