Equator

GOES-8 Satellite Image Captures Earth

[/caption]

An equator is an imaginary line that runs around the surface of a planet, perpendicular to the sphere’s axis of rotation. Of course, the one we’re most interested in is the Earth’s equator. Regions north of the equator are called the Northern Hemisphere, and then south of the equator is the Southern Hemisphere.

Here on Earth, the equator has a length of 40,008.6 kilometers, and its latitude is 0°. And if you can stand on the equator, you’ll see the Sun rise in the East and travel overhead through the day, and then set in the West; on the March and September equinox, the rays from the Sun fall straight down. This is also the spot with the quickest sunrise and sunset times, since the Sun moves exactly perpendicular to the horizon, rising straight up, without moving at an angle to the horizon.

Because the Earth is rotating, turning once a day on its axis, the Earth’s equator bulges out further from the center than from the poles. The Earth isn’t a sphere, but it’s actually an oblate spheroid. The equatorial diameter of the Earth is actually 43 kilometers greater than the polar diameter.

Since it’s the region of Earth that receives the most sunlight, the climate near the equator is hot – it’s summer all the time. People who live near the equator will generally distinguish between a long hot dry season and a long hot wet season. Some of the countries with the equator include Gabon, Congo, Uganda, Kenya, Somalia, Indonesia, Ecuador, Columbia, and Brazil.

The equator is the best place to launch a spacecraft on Earth. That’s because the rotational speed of the planet adds to the launch velocity of a rocket. Rockets launched from the equator can launch with less fuel, or carry more mass into orbit with the same amount of fuel. This is why the Guiana Space Centre is located in Kourou, French Guiana. And this is also why the Sea Launch platform travels from Los Angeles down to the equator before launching rockets.

We have written many articles about the Equator for Universe Today. Here’s an article about the temperature of the Earth, and here’s an article about the circumference of the Earth.

If you’d like more info on Equator, check out NASA’s Article about Latitude and Longitude. And here’s a link to NASA’s Earth Observatory.

We’ve also recorded an episode of Astronomy Cast all about planet Earth. Listen here, Episode 51: Earth.

Source: Wikipedia

Plane of the Ecliptic

[/caption]

Plane of the ecliptic, also known as the ecliptic plane, is a phrase you will often hear in astronomy. A basic definition is that the plane of the ecliptic is the plane of the Earth’s orbit, but that does not mean much to most people. Space is a three-dimensional vacuum, which you can think of as a kind of pool with the planets suspended in it. The Earth orbits the Sun on a particular angle and its orbit is elliptical in shape. The orbit is often shown as an ellipse made of dotted lines with the Sun at its center. If you made this ellipse a solid surface and extended it infinitively, then you would have the plane of the ecliptic. Actually our entire Solar System can be thought of as flat because all of the planets’ orbits are near or on this plane.

The ecliptic plane is used as the main reference when describing the position of other celestial objects in our Solar System. The angle between the plane of the ecliptic and the plane of an orbit is called the inclination. Until it was stripped of its status as a planet, Pluto was the planet with the most extreme inclination – 17°. Mercury is the only other planet with a significant inclination of 7°. There is also a 7° inclination between the plane of the Sun’s equator and the ecliptic plane. There are other celestial bodies that have a much greater inclination than any of the planets, such as Eris with a 44° inclination or Pallas with a 34° inclination.

The ecliptic plane got its name from the fact that a solar eclipse can only happen when the Moon crosses this plane to block out the Sun. Our Moon crosses the ecliptic about twice a month. A solar eclipse occurs when a new Moon crosses the ecliptic, and a lunar eclipse occurs when a full Moon crosses it.

Seasons on Earth are caused by our planet’s axial tilt of 23.5°, which causes variations in the amount of sunlight different parts of the Earth receive. This goes for all the other planets too. For example, Uranus rotates on its side with an axial tilt of 97.8°, which results in extreme variations in its seasons. The eclipse is also home to the constellations of the zodiac. There are twelve constellations in the zodiac, which are important symbols in astrology and can also be found in the Chinese calendar.  Here’s a list of all the zodiac symbols.

Universe Today has a number of articles including Virgo one of the zodiac signs and axial tilt.

You should also check out these articles on the ecliptic plane and ecliptic facts for more information.

Do not forget to tune into Astronomy Cast’s episode about the planet’s orbits.

Reference:
NASA: The Path of the Sun, the Ecliptic