NASA to Use Converted Bombers to Chase Totality

WB57B total solar eclipse
A NASA WB-57F on the ramp at Ellington Field near Houston ready to chase totality next month during the historic August 21st total solar eclipse. Credit: NASA/JSC

In a classic swords-to-plowshares move, two converted WB-57F aircraft flown by NASA’s Airborne Science Program will greet the shadow of the Moon as it rushes across the contiguous United States on Monday, August 21st on a daring mission of science.

“We are going to be observing the total solar eclipse with two aircraft, each carrying infrared and visible light cameras taking high definition video,” Southwest Research Institute (SwRI) Principal Investigator on the project Amir Caspi told Universe Today. “These will be the highest quality observations of their kind to date, looking for fast dynamic motion in the solar corona.”

Total solar eclipses provide researchers with a unique opportunity to study the solar corona – the ghostly glow of the Sun’s outer atmosphere seen only during totality. NASA plans a battery of experiments during the eclipse, including plans to intercept the Moon’s shadow using two aircraft near the point of greatest totality over Carbondale, Illinois. Flying out of Ellington Field near Houston Texas and operated by NASA’s Johnson Spaceflight Center, NASA is the only remaining operator of the WB-57F aircraft.

NASA fleet total solar eclipse
Group photo of NASA’s three WB-57F aircraft fleet. Credit: NASA/Robert Markowitz

Flying at an altitude of 50,000 feet, the aircraft will intercept the 70 mile wide shadow of the Moon. The shadow will be moving at 1,400 miles per hour – twice the speed of sound – versus the WB-57F aircraft’s max speed of 470 miles per hour. The flight will extend the length of totality from the 2 minutes 40 seconds seen on the ground, to a total of about 8 minutes between the two aircraft.

The two converted WB-57F Canberra tactical bombers will track the eclipse using DyNAMITE (Day Night Airbourne Motion Imagery for Terrestrial Environments), two tandem gimbal-mounted 8.7-inch imagers, one for visible light and one for infrared. These are located in the nose of the aircraft and will shoot 30 frames per second.

DyNAMITE
The new DyNAMITE system mounted in the nose of NASA’s WB-57F aircraft. Credit: NASA/Amir Caspi

This system was originally designed about a decade ago to chase down the U.S. Space Shuttle during reentry following the 2003 Columbia disaster and has, on occasion, provided amazing footage SpaceX Falcon-9 Stage 1 returns during reentry.

DyNAMITE total solar eclipse
The WAVE system, a precursor to DyNAMITE, seen up close. NASA/JSC

The solar corona is about as bright as the Full Moon, and the team plans to make a precise ‘map’ of the solar corona in an effort to understand just how the corona interacts with the solar photosphere and the chromosphere. Of particular interest is understanding how wave energy and ‘nanoflares’ heat the solar corona.

“What we’re hoping to learn is what makes the corona so hot, with temperatures of 1 to 2 million degrees Celsius — or even 4 to 10 million degrees Celsius in some regions — far hotter than the photosphere below,” Caspi told Universe Today. “What keeps it organized in terms of structure? Why don’t we see a snarled, tangled mess?”

As a secondary objective, the team will also make observations of the planet Mercury in the infrared 30 minutes before and after totality, located 11 degrees to the east of the Sun during the eclipse. Mercury never strays far from the Sun, making it a tough target to study in the infrared as seen from the Earth.

Totality total solar eclipse
Totality! Credit: Alan Dyer/Amazing Sky Photography.

And of course, all of this has to happen during the scant few minutes up to and during totality. Each aircraft will fly just inside opposite ends of the shadow of the Moon in a challenging long distance precision formation.

The WB-57F aircraft will also participate in a tertiary objective, hunting for Vulcanoid asteroids near the Sun during the eclipse. Though the 19th century idea of a tiny inter-Mercurial world perturbing Mercury’s orbit was banished to the dust bin of astronomical history by Einstein’s general theory of relativity, there’s still room for undiscovered asteroids dubbed ‘Vulcanoids’ close in to the Sun. NASA flew observations hunting for Vulcanoids aboard modified F-18 Hornet aircraft in 2002 scanning twilight realms near the Sun, and came up with naught.

Eclipse chaser Landon Curt Noll noted during an interview with Universe Today in 2015 that NASA’s Solar Heliospheric Observatory SOHO mission has pretty much ruled out objects brighter than +8th magnitude near the Sun, which translates into asteroids 60 kilometers in diameter or larger.

“We have searched down to magnitude +13.5,” Noll told Universe Today. “Assuming the objects are ‘Mercury like’ in reflectivity (in) the Vulcanoid zone (0.08 to 0.18 AU from the Sun), the search has looked for and failed to find objects as small as 2 to 6 kilometers in diameter.” NASA’s Mercury Messenger carried out a similar search en route to the innermost planet.

Stellarium total solar eclipse
Mercury versus the Sun during totality. Credit: Stellarium.

Knoll has scoured the sky near the eclipsed Sun with a specialized near-infrared telescope rig during the 2006 total solar eclipse over Libya. Next month, he plans to continue his quest from a site near Jackson Hole, Wyoming.

The action leading up to the the long awaited August 21st total solar eclipse begins at 17:16 Universal Time (UT)/ 10:16 AM Pacific Daylight Saving Time (PDT), when the Moon’s dark inner shadow or umbra touches down along the Oregon Pacific coast. From there, the 70 mile wide shadow will race eastward, gracing 14 states (just nicking Iowa and Montana) before departing land over the Atlantic coast of South Carolina 92 minutes later. Viewers along the path will witness a maximum totality of 2 minutes and 40 seconds, centered on a location very near Carbondale, Illinois. Millions are expected to make the pilgrimage to the eclipse path, while those outside the path in the remainder of North America as well as northern South America, western Africa, Europe and northeast Asia will see varying levels of a partial solar eclipse.

eclipse maps total soalar eclipse
The August 21st total solar eclipse over the United States. Credit: Michael Zeiler/Eclipse Maps

This is the end of a long “total solar eclipse drought” for the United States, marking the first time totality touched the continental United States since February 26, 1979, (totality crossed Hawaii on July 11th, 1991). The last total solar eclipse to cross the United States from coast-to-coast was June 8th, 1918.

NASA has a long history of airborne astronomy campaigns. Noll notes that NASA’s Stratospheric Observatory for Infrared Astronomy (SOFIA) flying observatory based out of Armstrong research center would make an ideal platform for Vulcanoid hunting during totality. Looking at SOFIA’s flight schedule, however, reveals no plans to carry out such a chase on August 21st. SOFIA’s predecessor, the Kuiper Observatory built into a U.S. Air Force C-141 Starlifter discovered the rings of Uranus during a stellar occultation in 1977.

“This is the first use of DyNAMITE and NASA’s WB-57F platform for astronomy,” Caspi told Universe Today. “This showcases the potential for the platform for possible future observations.”

The DyNAMITE/WB-57B campaign will also be part of the live NASA TV webcast on eclipse day.

Airborne total solar eclipse chasing goes all the way back to August 19th 1887, when Dmitri Mendeleev (he of the periodic table) observed totality from aloft. There’s a great old video of an effort to chase a 1925 total solar eclipse using the airship the USS Los Angeles:

A team also chased a total solar eclipse across North Africa on June 30th, 1973 aboard a supersonic Concorde:

Today, you can even book a ticket for an eclipse-chasing experience aloft. Alaska Airlines plans to attempt to duplicate its 2016 success, and will once again chase totality with a lucky few observers aboard next month.

As for us, we’re planning on watching the eclipse from terra firma at the Pisgah Astronomical Research Institute (PARI) in North Carolina while intrepid researchers fly high above. Watch for our complete eclipse guide out around July 21st on Universe Today and an update on weather prospects, solar activity etc. about a week prior. Finally, we’ll have an after action report out post total solar eclipse, with reader images from across the country.

-This promises to be a total solar eclipse for the ages. Don’t miss the Great American Eclipse!

-Also, be sure to check out the Eclipse MegaMovie Project.

-Read more about the August 21st total solar eclipse and the true tale of Vulcan, Totality and Edison’s Chickens in our free e-guide to 101 Astronomical Events for 2017, out from Universe Today.

-Be sure to read our original tales of eclipse science fiction.

An Impalpable Penumbral Eclipse

penumbral eclipse

Hey, how ’bout that annular eclipse last week? Some great images flooded in to Universe Today, as the final solar eclipse for 2016 graced the African continent. This not only marked the start of the second and final eclipse season for 2016, but it also set us up for the final eclipse of the year next week.

The path of next week's penumbral eclipse through the Earth's shadow. Adapted from NASA/GSFC/F. Espenak.
The path of next week’s penumbral eclipse through the Earth’s shadow. Adapted from NASA/GSFC/F. Espenak.

We’re talking about the penumbral lunar eclipse coming up next week on September 16th, 2016. this sort of eclipse occurs when the Moon just misses the dark inner core (umbra) of the Earth’s shadow, and instead, drifts through its relatively bright outer cone, known as the penumbra. Though not the grandest show as eclipses go, astute observers should notice a subtle light tea-colored shading of the Full Moon, and perhaps the ragged dark edge of the umbra on the northwestern limb of the Moon as it brushes by around mid-eclipse.

The visibility map for next week's eclipse. Image credit: NASA/GSFC/Fred Espenak.
The visibility map for next week’s eclipse. Image credit: NASA/GSFC/Fred Espenak.

The entirety of the eclipse will be visible from the region surrounding the Indian Ocean on the evening of Friday, September 6th. Viewers in Australia, New Zealand and Japan will see the eclipse transpire at moonset, and the eclipse will get underway at moonrise for observers in western Africa and Europe.

The eclipse runs from first contact at 16:55 Universal Time (UT) to 20:54 UT when the Moon quits the Earth’s shadow almost four hours later. Mid-eclipse occurs at 18:55 UT, with the Moon 91% immersed in the Earth’s outer shadow.

Tales of the Saros

This particular eclipse is member 9 of the 71 lunar eclipses in saros series 147. This saros began on July 2nd 1890 and runs through to the final eclipse in the cycle on May 1st 2990. It will produce its very first partial eclipse next time around on September 28th 2034, and its first total lunar eclipse on June 6th, 2449.

Why penumbrals? Aren’t they the ultimate non-event when it comes to eclipses? Like with much of observational astronomy, a penumbral lunar eclipse pushes our skills as a visual athlete to the limit. Check out the waxing gibbous Moon the night before the eclipse, then the Moon the night of the event. If you didn’t know any better, could you tell the difference from one night to the next? Often, the camera can see what the eye can’t. Photographing the Moon before, during and after a penumbral eclipse will often bring out the subtle shading on post-comparison. You’ll want to photograph the Moon when its high in the sky and free of atmospheric distortion low to the horizon, which tends to discolor the Moon. Such a high-flying Moon during mid-eclipse favors the Indian Subcontinent this time around. We’ve yet to see a good convincing time-lapse documenting a penumbral eclipse, though such a feat is certainly possible.

See anything... shady going on? Here's the penumbral lunar eclipse from this past March. Image credit and copyright: Neeraj Ladia
See anything… shady going on? Here’s the penumbral lunar eclipse from this past March. Image credit and copyright: Neeraj Ladia

When is an eclipse… not an eclipse? By some accounts, the Moon underwent a very shallow penumbral one cycle ago on August 18th, 2016, though the brush past the shadow was so slight that many lists, including the NASA’s GSFC eclipse page omitted it. Three eclipses (a lunar partial and a penumbral, or two penumbrals and one solar) can occur in one eclipse season, if the nodes of the Moon’s orbit where it intersects the ecliptic fall just right. This last occurred in 2013, and will happen again in 2020.

And when there’s a lunar eclipse, there’s also a Full Moon. The September Full Moon is the Harvest Moon, providing a few extra hours of illumination to get the crops in. This year, the Harvest Moon falls just six days from the equinox on September 22nd, marking the start of astronomical Fall in the northern hemisphere and Spring in the southern. The relative ecliptic angle also ensures that moonrise only slides back by a slight amount each evening for observers in mid-northern latitudes around the Harvest Moon.

Can’t wait til the next eclipse? Well, 2017 has four of ’em: an annular on February 26th favoring South America, two lunars (another penumbral on February 11th and a partial on August 7th) and oh yeah, there’s a total solar eclipse crossing the United States on August 21st. And the next total lunar eclipse? The dry spell is broken on January 31st, 2018, when a total lunar eclipse favoring the Pacific Rim occurs. Yeah, we got spoiled with four back-to-back lunar eclipses during the Blood Moon tetrad of 2014-2015…

Read Dave Dickinson’s eclipse-fueled sci-fi tales Exeligmos, Shadowfall, The Syzygy Gambit and Peak Season.

Standing in the Shadow: Amazing Images of Today’s Total Solar Eclipse

The Moon’s shadow kissed the Earth earlier today, providing a fine show from southeast Asia, to the southern shores of Alaska. We wrote about the only total solar eclipse for 2016 yesterday. This is it, the last total solar eclipse prior to the return of totality for the contiguous United States on August 21st, 2017.

Cloud cover over the region was a toss up, with clear skies for some, and cloudy skies for others. Those towards the western end of the track where the eclipsed rising Sun sat low on the horizon seemed to have fared worst.

Image credit:
Clouds thwarted a Malaysian team that had journeyed to Indonesia to view the eclipse (including Sharin Ahmad @shahgazer), though they were at the ready. Image credit and copyright: Sharin Ahmad.

Update: Sometimes, the camera sees what the eye misses. The Malaysian team did indeed manage to nab a fine display of Bailey’s Beads in the moments leading up to totality through a thin gap in the clouds:

Sunlight, interupted. A welcome photobomb courtesy of the Earth's Moon. Image credit and copyright: Shahrin Ahmad. (@shahgazer)
Sunlight, interupted. A welcome photobomb courtesy of the Earth’s Moon. Image credit and copyright: Shahrin Ahmad. (@shahgazer)

Skies dawned clear to the east over the Indonesian islands on the morning of the eclipse, and the joint NASA/Exploratorium webcast from the remote atoll of Woleai in Micronesia was a success.

Image credit
A ‘helipad solar observatory’ readied for the eclipse. Image credit and copyright: Patrick Poitevin.

Observing from a helipad Balikpanpan, Indonesia, veteran eclipse chaser Patrick Poitevin said: “What an eclipse! Vertically clear sky throughout the entire eclipse from our ‘private’ helipad in Balikpapan. Only slight haze now and then. Asymmetric corona, with bright and prominent snow white streamer. Venus, Mercury easily visible long before, and shadow bands post totality. Fabulous! All so pretty!!! Marked the second Saros 130 for Jo and the 3rd for me.”

Image credit
Many viewers noted a fine solar prominence on the solar limb seen during totality. Patrick Poitevin caught the prominence using a hydrogen-alpha solar telescope just moments before the onset of totality. Image credit: Patrick Poitevin.

Indeed, catching a ‘triple saros’ known as an exeligmos is a noteworthy lifetime accomplishment.

09 March 2016 - Total Solar Eclipse from Palu, Indonesia. Image credit and copyright: Justin Ng.
09 March 2016 – Total Solar Eclipse from Palu, Indonesia. Image credit and copyright: Justin Ng.

Many witnessed the eclipse via Slooh’s live webcast from the path of totality, which is now archived in its entirety on YouTube.

Totality, as witnessed by the Slooh team in Indonesia. Image credit: www.slooh.com
Totality, as witnessed by the Slooh team in Indonesia. Image credit: www.slooh.com

As of writing this, no views from space have surfaced, though we suspect this will change as the day goes on. Word is that the Alaskan Airlines flight that modified their flight plan to catch the eclipse was successful as well. Check back, as we’ll be dropping in more images as they trickle in from the field throughout the day.

The partial phases of today's eclipse as seen from Lava Lava, Hawaii. image credit and copyright: Rob Sparks (@halfastro)
The partial phases of today’s eclipse as seen from Lava Lava, Hawaii. Image credit and copyright: Rob Sparks (@halfastro)

Update: Scratch that… Japan’s Himawari-8 weather satellite did indeed nab views of the umbra of the Moon as it raced across the Pacific:

An animation of today's total solar eclipse as seen from space. Image credit: The Meteorological Satellite Center of JAMA.
An animation of today’s total solar eclipse as seen from space. Image credit: The Meteorological Satellite Center of JAMA.

Though the eclipse was almost entirely over water after the umbra departed SE Asia, regions around the path were treated to a fine partial eclipse, including residents of Hawaii:

August 21st 2017 is now the very next total solar eclipse in the queue!

Update: and the amazing images just keep on coming… here’s an amazing image and time lapse video courtesy of astrophotographer Justin Ng:

09 March 2016 - Total Solar Eclipse from Palu, Indonesia. Image credit and copyright: Justin Ng Photography.
09 March 2016 – Total Solar Eclipse from Palu, Indonesia. Image credit and copyright: Justin Ng Photography.

And timelapse:

2016 Total Solar Eclipse – Palu Indonesia from Justin Ng Photo on Vimeo.

Wow. just wow!

Chasing the Shadow: Our Guide to the March 9th Total Solar Eclipse

Ready for the ultimate in astronomical events? On the morning of Wednesday, March 9th, the Moon eclipses the Sun for viewers across southeast Asia.

Many intrepid umbraphiles are already in position for the spectacle. The event is the only total solar eclipse of 2016, and the penultimate total solar eclipse prior the ‘Big One’ crossing the continental United States on August 21st, 2017.

Image credit: Great American Eclipse/Michael Zeiler
The path of tomorrow’s eclipse. Image credit: Great American Eclipse/Michael Zeiler

Tales of the Saros

This particular eclipse is member 52 of 73 eclipses in saros cycle 130, which runs from 1096 AD to 2394. If you saw the total solar eclipse which crossed South America on February 26th, 1998, then you caught the last solar eclipse from the same cycle.

Image credit: NASA/GSFC/A.T. Sinclair
An animation of the event. Image credit: NASA/GSFC/A.T. Sinclair

Weather prospects are dicey along the eclipse track, as March is typically the middle of monsoon season for southeast Asia. Most eclipse chasers have headed to the islands of Indonesia or cruises based nearby to witness the event. The point of greatest eclipse lies off of the southeastern coast of the Philippine Islands in the South China Sea, with a duration of 4 minutes and 10 seconds. Most observers, however, will experience a substantially shorter period of totality. For example, totality lasts only 2 minutes and 35 seconds over island of Ternate, where many eclipse chasers have gathered. The Sun will be 48 degrees above the horizon from the island during totality.

A great place to check cloud cover and weather prospects along the eclipse track is the Eclipsophile website.

Image credit; SkippySky
A dicey sky: prospects for cloud cover over Australia. Image credit; SkippySky

The umbra of the Earth’s Moon will sweep across Sumatra at sunrise and across the island of Borneo, to landfall one last time for Indonesia over the island of North Maluku before sweeping across the central Pacific. This eclipse is unusual in that it makes landfall over a very few countries: the island nation of Indonesia, and just a few scattered atolls in Palau and Micronesia.

Partial phases of the eclipse are also visible from India at sunrise, across northeast Asia along the northernmost track, to central Australia in the south, and finally, to southern Alaskan coast at sunset. Honolulu Hawaii sees a 65% partial solar eclipse in the late afternoon on March 8th.

Expect great views, both from Earth and from space. We typically get images from solar observing spacecraft, to include the joint NASA/JAXA Hinode mission, and the European Space Agency’s PROBA-2 spacecraft. Both are in low-Earth orbit, and see a given eclipse as a swift, fleeting event. Other solar observatories—such as the Solar Heliospheric Observatory and the Solar Dynamics Observatory—occupy a different vantage point in space, and miss the eclipse.

Image credit: Starry Night Education Software
The orientation of the Sun and planets at totality (click to enlarge). Image credit: Starry Night Education Software

As of this writing, we know of several folks that have made the journey to stand in the path of totality, to include Sharin Ahmad (@Shagazer), Michael Zeiler (@GreatAmericanEclipse) and Justin Ng.

Good luck and clear skies to all observers out there, awaiting darkness in the path of totality.

Live in the wrong hemisphere? There are several live webcasts planned from the eclipse zone:

NASA and the National Science Foundation are working with a team from San Francisco’s Exploratorium to bring a live webcast of the eclipse from the remote atoll island of Woleai, Micronesia. The feed starts at 7:00 EST/0:00 Universal Time (UT) and runs for just over three hours. You can follow the exploits of the team leading up to show time here.

The venerable Slooh will also feature a webcast of the eclipse with astronomer Paul Cox from Indonesia running for three hours starting at 6:00 PM EST/23:00 UT.

A view of the partial phases of the eclipse from the Hong Kong science center also starts at 5:30 PM EST/22:30 UT:

Don’t forget: though the eclipse occurs on the morning of March 9th local time in southeast Asia, the path crosses the International Dateline, and the webcasts kick off on the evening of Tuesday March 8th for North America.

And hey, Alaska Airlines flight 870 from Anchorage to Honolulu will divert from its flight plan slightly… just to briefly intercept the Moon’s shadow (its already a fully booked flight!)

From there, 2016 features only two faint penumbral lunar eclipses on March 23rd and September 16th, and an annular solar eclipse crossing central Africa on September 1st.

We’ll be doing a post-eclipse round up, with tales from totality and the pics to prove it… stay tuned!

Got eclipse pictures to share? Send ’em to Universe Today… we just might feature them in our round up!

Don’t miss our eclipse-fueled science fiction tales: Exeligmos and Shadowfall.