New Finds From Kepler: 8 New Worlds Discovered in the Habitable Zone

A fascinating set of finds was announced today at the 225th meeting of the American Astronomical Society (AAS), currently underway this week in Seattle, Washington. A team of astronomers announced the discovery of eight new planets potentially orbiting their host stars in their respective habitable zones. Also dubbed the ‘Goldilocks Zone,’ this is the distance where — like the tempting fairytale porridge — it’s not too hot, and not too cold, but juuusst right for liquid water to exist.

And chasing the water is the name of the game when it comes to hunting for life on other worlds. Two of the discoveries announced, Kepler-438b and Kepler-442b, are especially intriguing, as they are the most comparable to the Earth size-wise of any exoplanets yet discovered.

“Most of these planets have a good chance of being rocky, like Earth,” said Guillermo Torres in a recent press release. Guillermo is the lead author in the study for the Harvard-Smithsonian Center for Astrophysics (CfA).

This also doubles the count of suspected terrestrial exo-worlds — planets with less than twice the diameter of the Earth — inferred to orbit in the habitable zone of their host stars.

Fans on exoplanet science will remember the announcement of the first prospective Earth-like world orbiting in the habitable zone of its host star, Kepler-186f announced just last year.

The Kepler Space Telescope looks for planets used a technique known as the transit method. If a planet is orbiting its host star along our line of sight, a small but measurable dip in the star’s brightness occurs. This has advantages over the radial velocity technique because it allows researchers to pin down the hidden planet’s orbit and size much more precisely. The transit method is biased, however, to planets close in to its host which happen to lie along our solar system-bound line of sight. Kepler may miss most exo-worlds inclined out of its view, but it overcomes this by staring at thousands of stars.

Kepler launch
The launch of Kepler from the Cape in 2009. Credit: NASA/Kim Shiflett.

Launched in 2009, Kepler has wrapped up its primary phase of starring at a patch of sky along the plane of the Milky Way in the directions of the constellations of Cygnus, Lyra and Hercules, and is now in its extended K2 mission using the solar wind pressure as a 3rd ‘reaction wheel’ to carry out targeted searches along the ecliptic plane.

Both newly discovered worlds highlighted in today’s announcement orbit distant red dwarf stars. Kepler-438 b is estimated to be 12% larger in diameter than the Earth, and Kepler-442 b is estimated by the team to be 33% larger. These worlds have a 70% and 60% chance of being rocky, respectively. For comparison, Ice giant planet Uranus is 4 times the diameter of the Earth, and over 14 times more massive.

A comparison of the new exoplanet finds between Earth and Jupiter. Credit: NASA/Kepler.
A comparison of the new exoplanet finds between Earth and Jupiter. Credit: NASA/Kepler.

“We don’t know for sure whether any of the planets in our sample are truly habitable,” Said CfA co-researcher in the study David Kipping. All we can say is that they’re promising candidates.”

The idea of habitable worlds around red dwarf stars is a tantalizing one. These stars are fainter and cooler than our Sun, and 7.5% to 50% as massive. They also have two primary factors going for them: they’re the most common type of stars in the universe, and they have life spans measured in trillions of years, much longer than the current age of the universe. If life could go from muck to making microwave dinners here on Earth in just a few billion years, it’s had lots longer to do the same on worlds orbiting red dwarf stars.

There is, however, one catch: the habitable zone surrounding a red dwarf is much closer in to its host star, and any would-be planet is subject to frequent surface-sterilizing flares. Perhaps a world with a synchronous rotation might be spared this fate and feature a habitable hemisphere well inside the snow line permanently turned away from its host.

The team made these discoveries by sifting though Kepler’s preliminary finds that are termed KOI’s, or Kepler Objects of Interest. Though these potential discoveries were far too small to pin down their masses using the traditional method, the team employed a program named BLENDER to statically validate the finds. BLENDER has been employed before in concert with backup observations for extremely tiny exoplanet discoveries. Torres and Francois Fressin developed the BLENDER program, and it is currently run on the massive Pleiades supercomputer at NASA Ames.

It was also noted in today’s press conference that two KOIs awaiting validation — 5737.01 and 2194.03 — may also prove to be terrestrial worlds  orbiting Sun-like stars that are possibly similar in size to the Earth.

The proposed target regions for the Kepler K2 mission. Credit: NASA/Kepler.
The proposed target regions for the Kepler K2 mission. Credit: NASA/Kepler.

But don’t plan on building an interstellar ark and heading off to these newly found worlds just yet. Kepler-438b sits 470 light years from Earth, and Kepler-442b is even farther away at 1,100 light years. And we’ll also add our usual caveat and caution that, from a distance, the planet Venus in our own solar system might look like a tempting vacation spot. (Spoiler alert: it’s not).

Still, these discoveries are fascinating finds and add to the growing menagerie of exoplanet systems. These will also serve as great follow up targets for TESS, Gaia and LSST survey, all set to add to our exoplanet knowledge in the coming decade.

The LSST mirror in the Tuscon Mirror Lab. (Photo by author).
The LSST mirror in the Tuscon Mirror Lab. (Photo by author).

And to think, I remember growing up as a child of the 1970s reading that exoplanet detections were soooo difficult that they might never occur in our lifetime… now, fast-forward to 2015, and we’re beginning to classify and characterize other brave new solar systems in the modern Age of Exoplanet Science.

-Looking to observe red dwarf stars with your backyard scope? Check out our handy list.

On the Road to One Thousand Exoplanets

A quiet milestone in modern astronomy may soon come to pass.  As of today, The Extrasolar Planets Encyclopedia lists a current tally of 998 extrasolar planets across 759 planetary systems. And although various tabulations differ slightly, very soon we should be living in an era where over one thousand exoplanets are known.

The history of exoplanet discovery has paralleled the course of the modern age of astronomy. It’s strange to think that a generation has already grown up over the past two decades in a world where knowledge of extrasolar planets is a given. I remember hearing of the promise of such detections growing up in the 1970’s, as astronomers put the odds at detection of planets beyond our solar system in our lifetime at around 50%.

A "Periodic Table of Exoplanets" Credit: PHL @ UPR Arecibo.
A “Periodic Table of Exoplanets” Credit: PHL @ UPR Arecibo.

Sure, there were plenty of false positives long before the first true discovery was made. 70 Ophiuchi was the site of many claims, starting with that of W.S. Jacob of the Madras Observatory way back in 1855. The high proper motion exhibited by Barnard’s Star at six light years distant was also highly scrutinized throughout the 20th century for claims of an unseen companion causing it to wobble. Ironically, Barnard’s Star still hasn’t made it into the pantheon of stars boasting planetary worlds.

A portrait of the HR8799 planetary system as imaged by the Hale Telescope. (Credit: NASA/JPL-Caltech/Palomar Observatory).
A portrait of the HR8799 planetary system as imaged by the Hale Telescope. (Credit: NASA/JPL-Caltech/Palomar Observatory).

But the first verified claim of an exoplanetary system came from a bizarre and unexpected source: a pulsar known as PSR B1257+12, which was discovered to host two worlds in 1992. This was followed by the first discovery of a world orbiting a main sequence star, 51 Pegasi in 1994. I still remember getting my hands on the latest issue of Astronomy magazine— we got our news, often months later, from actual paper magazines in those days —announcing “Planet Discovered!” on the cover.

Most methods and techniques used to discover exoplanets rely on either radial velocity or dips in the light output of a star from a transiting world. Both have their utility and drawbacks. Radial velocity looks for shifts in the star’s spectra as an unseen companion tugs it around a common center of mass. Though effective, it can only place a lower limit on the planet’s mass… and it’s biased towards worlds in short orbits. This is one reason that “hot Jupiters” have dominated the early exoplanet catalog: we hadn’t been looking for all that long.

Another method famously employed by surveys such as the Kepler space telescope is the transit detection method. This allows a much more refined estimate of a planet’s mass and orbit, assuming it transits the disk of its host star as seen from our Earthly vantage point in the first place, which most don’t.

A size comparision of exoplanets versus composition. (Credit: Marc Kuchner/NASA/GSFC).
A size comparision of exoplanets versus composition. (Credit: Marc Kuchner/NASA/GSFC).

Direct detection via occulting the host star is also coming of age. One of the first exoplanets directly imaged was Fomalhaut b, which can be seen changing positions in its orbit from 2004 to 2006.

Gravitational microlensing has also bared planetary fruit, with surveys such as MOA (Microlensing Observations in Astrophysics) and OGLE (the Optical Gravitational Lensing Experiment) catching brief lensing events as an unseen body passes in front of a background star. Distant free-ranging rogue planets can only be detected via this method.

More exotic techniques also exist, such as relativistic beaming (sounding like something out of Star Trek). Other methods include searches for tiny light variations as an illuminated planet orbits its host star, deformities caused by ellipsoidal variations as massive planets orbit a star, and infrared detections of circumstellar disks. We’re always amazed at the wealth of data that can be teased out of a few dim photons of light.

A scatter plot of exoplanet discoveries as of 2010 mass versus semi-major axis. Select exoplanets are labeled. A majority were detected via radial velocity (blue) and the transiting method (green). The remainder were detected by other methods (click here for a full discription). Graph in the Public Domain.
A scatter plot of exoplanet discoveries as of 2010 displaying mass versus semi-major axis. Select exoplanets are labeled. A majority were detected via radial velocity (blue) and the transiting method (green). The remainder were detected by other methods (click here for a full description). Graph in the Public Domain.

Universe Today has grown up with exoplanet science, from reporting on the hottest, fastest, and other notable “firsts”. A bizarre menagerie of worlds are now known, many of which defy the imagination of science fiction writers of yore. Want a world made of diamond, or one where it rains glass? There’s now an “exoplanet for that”.

Exoplanet news has almost gone from the incredible to the routine, as Tatooine-like worlds orbiting binary stars and systems with worlds in bizarre resonances are announced with increasing frequency.

Exoplanet surveys also have a capacity to peg down that key fp factor in the famous Drake equation, which asks us “what fraction of stars have planets”. It’s been long suspected that stars with planets are the rule rather than the exception, and we’re just now getting hard data to back that assertion up.

Missions, such as NASA’s Kepler space telescope and CNES/ESA CoRoT space telescope have swollen the ranks of extrasolar worlds. Kepler recently ended its career staring off in the direction of the constellations Cygnus, Hercules and Lyra and still has over 3,200 detections awaiting confirmation.

Exoplanet discoveries by year as of October 2013, color coded by method. Blue=radial velocity, Green=transiting, Yellow=timing, Red=direct imaging, Orange=microlensing
Exoplanet discoveries by year as of October 2013, color coded by method. Blue=radial velocity, Green=transiting, Yellow=timing, Red=direct imaging, Orange=microlensing

But is a given world Earthlike, or just Earth-sized? That’s the Holy Grail of modern exoplanet detection: an Earth-sized world orbiting in a star’s habitable zone. We’re cautious every time the latest “Earth-twin” makes its way into the headlines. From the perspective of an intergalactic astronomer, Venus in our own solar system might appear to fit the bill, though I wouldn’t bank the construction of an interstellar ark on it and head there just yet.

Exoplanet science has definitely come of age, allowing us to finally begin characterization of solar systems and give us some insight into solar system formation.

But perhaps what will be the most enduring legacy is what the discovery of extrasolar planets tells us about ourselves. How common (or rare) is the Earth? How typical is the story of our solar system? If the “first 1,000” are any indication, we strongly suspect that terrestrial planets come in enough distinct varieties or ”flavors” to make Baskin Robbins envious.

And the future of exoplanet science looks bright indeed. One proposed mission, known as the Fast INfrared Exoplanet Spectroscopy Survey Explorer, or FINESSE, would target exoplanet atmospheres, if given the go ahead for a 2017 launch. Another proposal, known as the Wide Field Infrared Survey Telescope, or WFIRST, would search for microlensing events starting in 2023. A mission that scientists would love to fly that always seems to be shelved is known as the Terrestrial Planet Finder.

But the exoplanet hunting mission that’s closest to launch is the Transiting Exoplanet Survey Satellite, or TESS. Unlike Kepler, which stares at a single patch of sky, TESS will be an all-sky survey looking at a half million stars.

We’re also just approaching an era where spectroscopy may allow us to detect exomoons and the chemistry taking place on these far off exoworlds. An example of an exciting discovery would be the detection of a chemical such as chlorophyll, a chemical that we know on Earth only exists as the result of life. But what a tantalizing discovery a blip on a graph would be, when what we humans really want to see is the vista of those far-flung alien forests!

Such is the exciting era we live in. Congratulations, humanity, on detecting 1,000 exoplanets… here’s to a thousand more!

Earthlike Exoplanets Are All Around Us

Artist’s impression of a rocky planet orbiting a red dwarf. Credit: David A. Aguilar (CfA)

We may literally be surrounded by potentially habitable exoplanets, according to new research by a team from the Harvard-Smithsonian Center for Astrophysics.

Using data gathered by NASA’s exoplanet-hunting Kepler spacecraft, the CfA researchers discovered that many red dwarf stars harbor planets, and some of those planets are rocky, Earth-sized worlds. Considering that red dwarfs, albeit optically dim, are the most abundant type of stars in our galaxy, this means that even a small percentage of them being host to Earthlike exoplanets puts the total number of potentially habitable worlds very high — and some of them could be right next door.

“We thought we would have to search vast distances to find an Earth-like planet,” said CfA astronomer and the paper’s lead author Courtney Dressing. “Now we realize another Earth is probably in our own backyard, waiting to be spotted.”

And our own backyard, in cosmic terms, could mean a mere 13 light-years away.

Our solar system is surrounded by red dwarfs. You can’t see them in the night sky because they are much too dim — less than a thousandth the brightness of the Sun. But they make up 75% of the stars in the local neighborhood, and based on the Kepler data the CfA team estimates that 6% of those red dwarfs likely have an Earth-sized planet in orbit around them.

And with at least 75 billion red dwarfs scattered across the galaxy… well, you do the math.*

“We now know the rate of occurrence of habitable planets around the most common stars in our galaxy,” said co-author David Charbonneau (CfA). “That rate implies that it will be significantly easier to search for life beyond the solar system than we previously thought.”


A visualization of the “unseen” red dwarfs in the night sky. Credit: D. Aguilar & C. Pulliam (CfA) See original here.

The conditions on a planet orbiting a red dwarf wouldn’t be exactly like Earth, of course. The planet would have to orbit rather closely to its star to be within its habitable zone, and would have to have a reasonably thick atmosphere to regulate heat and protect it from stellar outbursts. But one benefit to orbiting a red dwarf is that they have very long life spans — potentially longer than the current age of the Universe! So a habitable world around a red dwarf would literally have billions of years for life to evolve, thrive and develop on it.

“We might find an Earth that’s 10 billion years old,” Charbonneau said.

The team’s findings were presented today, Feb. 6, by Dressing during a press conference at the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA. The results will be published in The Astrophysical Journal. (Added 2/7/13: here’s the video of the press conference.)

press_conference_d+c2013.pptxCfA astronomers identified 95 planetary candidates circling red dwarf stars. Of those, three orbit within the habitable zone (marked in green) – the distance at which they should be warm enough to host liquid water on the surface. Those three planetary candidates (marked with blue dots) are 0.9, 1.4, and 1.7 times the size of Earth. Credit: C. Dressing (CfA)

Read more on the CfA news release here.

*Ok, I did the math. That’s 4,500,000,000 Earth-like exoplanets around red dwarfs alone!