Buster the Dummy Strapped in for Mile High SpaceX Dragon Flight Test

SpaceX and NASA are just days away from a crucial test of a crew capsule escape system that will save astronauts lives in the unlikely event of a launch failure with the Falcon 9 rocket.

Buster the Dummy is already strapped into his seat aboard the SpaceX Crew Dragon test vehicle for what is called the Pad Abort Test, that is currently slated for Wednesday, May 6.

The test is critical for the timely development of the human rated Dragon that NASA is counting on to restore the US capability to launch astronauts from US soil abroad US rockets to the International Space Station (ISS) as early as 2017.

Boeing was also selected by NASA to build the CST-100 spaceship to provide a second, independent crew space taxi capability to the ISS during 2017.

The May 6 pad abort test will be performed from the SpaceX Falcon 9 launch pad from a platform at Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. The test will not include an actual Falcon 9 booster.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in May 2015. Credit: SpaceX.

The SpaceX Dragon and trunk together stand about 20 feet tall and are positioned atop the launch mount at SLC-40 for what is clearly labeled as a development test to learn how the Dragon, engines and abort system perform.

Buster will soar along inside the Dragon that will be rapidly propelled to nearly a mile high height solely under the power of eight SpaceX SuperDraco engines.

The trunk will then separate, parachutes will be deployed and the capsule will splashdown about a mile offshore from Florida in the Atlantic Ocean, said Hans Koenigsmann, vice president of Mission Assurance at SpaceX during a May 1, 2015 press briefing on the pad abort test at the Kennedy Space Center, Florida.

The entire test will take about a minute and a half and recovery teams will retrieve Dragon from the ocean and bring it back on shore for detailed analysis.

The test will be broadcast live on NASA TV. The test window opens at 7 a.m. EDT May 6 and extends until 2:30 p.m. EDT. The webcast will start about 20 minutes prior to the opening of the window. NASA will also provide periodic updates about the test at their online Commercial Crew Blog.

SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX
SpaceX Dragon V2 pad abort test flight vehicle. Credit: SpaceX

The test is designed to simulate an emergency escape abort scenario from the test stand at the launch pad in the unlikely case of booster failing at liftoff or other scenario that would threaten astronauts inside the spacecraft.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a split second in a simulated emergency to save the astronauts lives in the event of a real emergency.

The SuperDraco engines are located in four jet packs around the base. Each engine produces about 15,000 pounds of thrust pounds of axial thrust, for a combined total thrust of about 120,000 pounds, to carry astronauts to safety, according to Koenigsmann.

“This is what SpaceX was basically founded for, human spaceflight,” said Hans Koenigsmann, vice president of Mission Assurance with SpaceX.

“The pad abort is going to show that we’ve developed a revolutionary system for the safety of the astronauts, and this test is going to show how it works. It’s our first big test on the Crew Dragon.”

SpaceX and NASA hope to refurbish and reuse the same Dragon capsule for another abort test at high altitude later this year. The timing of the in flight abort test hinges on the outcome of the pad abort test.

“No matter what happens on test day, SpaceX is going to learn a lot,” said Jon Cowart, NASA’s partner manager for SpaceX. “One test is worth a thousand good analyses.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

Beside Buster the dummy, who is human-sized, the Dragon is outfitted with 270 sensors to measure a wide range of vehicle, engine, acceleration and abort test parameters.

“There’s a lot of instrumentation on this flight – a lot,” Koenigsmann said. “Temperature sensors on the outside, acoustic sensors, microphones. This is basically a flying instrumentation deck. At the end of the day, that’s the point of tests, to get lots of data.”

Buster will be accelerated to a force of about 4 to 4½ times the force of Earth’s gravity, noted Koenigsmann.

The pad abort test is being done under SpaceX’s Commercial Crew Integrated Capability (CCiCap) agreement with NASA that will eventually lead to certification of the Dragon for crewed missions to low Earth orbit and the ISS.

“The point is to gather data – you don’t have to have a flawless test to be successful,” Cowart said.

The second Dragon flight test follows later in the year, perhaps in the summer. It will launch from a SpaceX pad at Vandenberg Air Force Base in California and involves simulating an in flight emergency abort scenario during ascent at high altitude at maximum aerodynamic pressure (Max-Q) at about T plus 1 minute, to save astronauts lives.

The pusher abort thrusters would propel the capsule and crew safely away from a failing Falcon 9 booster for a parachute assisted splashdown into the Ocean.

Koenigsmann notes that the SpaceX abort system provides for emergency escape all the way to orbit, unlike any prior escape system such as the conventional launch abort systems (LAS) mounted on top of the capsule.

“Whatever happens to Falcon 9, you will be able to pull out the astronauts and land them safely on this crew Dragon,” said Koenigsmann. “In my opinion, this will make it the safest vehicle that you can possibly fly.”

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP), as the worlds privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014 news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

The next Falcon 9 launch is slated for mid-June carrying the CRS-7 Dragon cargo ship on a resupply mission for NASA to the ISS. On April 14, a flawless Falcon 9 launch boosted the SpaceX CRS-6 Dragon to the ISS.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

There was no attempt to soft land the Falcon 9 first stage during the most recent launch on April 27. Due to the heavy weight of the TurkmenÄlem52E/MonacoSat satellite there was not enough residual fuel for a landing attempt on SpaceX’s ocean going barge.

The next landing attempt is set for the CRS-7 mission.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center.  Credit: Ken Kremer/kenkremer.com
Hans Koenigsmann, vice president of Mission Assurance at SpaceX during CRS-6 mission media briefing in April 2015 at the Kennedy Space Center. Credit: Ken Kremer/kenkremer.com

SpaceX Prepares for Crucial Crew Dragon Capsule Pad Abort Test

SpaceX is preparing for the first of two critical abort tests for the firm’s next generation human rated Dragon V2 capsule as soon as March.

The purpose of the pair of abort tests is to demonstrate a crew escape capability to save the astronauts’ lives in case of a rocket failure, starting from the launch pad and going all the way to orbit.

The SpaceX Dragon V2 and Boeing CST-100 vehicles were selected by NASA last fall for further funding under the auspices of the agency’s Commercial Crew Program (CCP) as the world’s privately developed spaceships to ferry astronauts back and forth to the International Space Station (ISS).

Both SpaceX and Boeing plan to launch the first manned test flights to the ISS with their respective transports in 2017.

During the Sept. 16, 2014, news briefing at the Kennedy Space Center, NASA Administrator Charles Bolden announced that contracts worth a total of $6.8 Billion were awarded to SpaceX to build the manned Dragon V2 and to Boeing to build the manned CST-100.

The first abort test involving the pad abort test is currently slated to take place soon from the company’s launch pad on Cape Canaveral Air Force Station in Florida, according to Gwynne Shotwell, president of SpaceX.

“First up is a pad abort in about a month,” said Shotwell during a media briefing last week at NASA’s Johnson Space Center in Houston, Texas.

SpaceX engineers have been building the pad abort test vehicle for the unmanned test for more than a year at their headquarters in Hawthorne, California.

Dragon V2 builds on and significantly upgrades the technology for the initial cargo version of the Dragon which has successfully flown five operational resupply missions to the ISS.

“It took us quite a while to get there, but there’s a lot of great technology and innovations in that pad abort vehicle,” noted Shotwell.

First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014.  Credit: SpaceX.
First look at the SpaceX Crew Dragon’s pad abort vehicle set for flight test in March 2014. Credit: SpaceX.

The pad abort demonstration will test the ability of a set of eight SuperDraco engines built into the side walls of the crew Dragon to pull the vehicle away from the launch pad in a simulated emergency.

The SuperDraco engines are located in four jet packs around the base. Each engine can produce up to 120,000 pounds of axial thrust to carry astronauts to safety, according to a SpaceX description.

Here is a SpaceX video of SuperDraco’s being hot fire tested in Texas:

Video caption: Full functionality of Crew Dragon’s SuperDraco jetpacks demonstrated with hotfire test in McGregor, TX. Credit: SpaceX

For the purpose of this test, the crew Dragon will sit on top of a facsimile of the unpressurized trunk portion of the Dragon. It will not be loaded on top of a Falcon 9 rocket for the pad abort test.

The second abort test involves a high altitude abort test launching atop a SpaceX Falcon 9 rocket from Vandenberg Air Force Base in California.

“An in-flight abort test [follows] later this year,” said Shotwell.

“The Integrated launch abort system is critically important to us. We think it gives incredible safety features for a full abort all the way through ascent.”

“It does also allow us the ultimate goal of fully propulsive landing.”

Both tests were originally scheduled for 2014 as part of the firm’s prior CCiCAP development phase contract with NASA, SpaceX CEO Elon Musk told me in late 2013.

“Assuming all goes well, we expect to conduct [up to] two Dragon abort tests next year in 2014,” Musk explained.

Last year, NASA granted SpaceX an extension into 2015 for both tests under SpaceX’s CCiCAP milestones.

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during a prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The SpaceX Dragon V2 will launch atop a human rated Falcon 9 v1.1 rocket from Space Launch Complex 40 at Cape Canaveral.

“We understand the incredible responsibility we’ve been given to carry crew. We should fly over 50 Falcon 9’s before crewed flight,” said Shotwell.

To accomplish the first manned test flight to the ISS by 2017, the US Congress must agree to fully fund the commercial crew program.

“To do this we need for Congress to approve full funding for the Commercial Crew Program,” Bolden said at last week’s JSC media briefing.

Severe budget cuts by Congress forced NASA into a two year delay in the first commercial crew flights to the ISS from 2015 to 2017 – and also forced NASA to pay hundreds of millions of more dollars to the Russians for crews seats aboard their Soyuz instead of employing American aerospace workers.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA
Boeing and SpaceX are building private spaceships to resume launching US astronauts from US soil to the International Space Station in 2017. Credit: NASA

Obama Administration Proposes $18.5 Billion Budget for NASA – Bolden

The Obama Administration today (Feb. 2) proposed a NASA budget allocation of $18.5 Billion for the new Fiscal Year 2016, which amounts to a half-billion dollar increase over the enacted budget for FY 2015, and keeps the key manned capsule and heavy lift rocket programs on track to launch humans to deep space in the next decade and significantly supplements the commercial crew initiative to send our astronauts to low Earth orbit and the space station later this decade.

NASA Administrator Charles Bolden formally announced the rollout of NASA’s FY 2016 budget request today during a “state of the agency” address at the Kennedy Space Center (KSC), back dropped by the three vehicles at the core of the agency’s human spaceflight exploration strategy; Orion, the Boeing CST-100 and the SpaceX Dragon.

“To further advance these plans and keep on moving forward on our journey to Mars, President Obama today is proposing an FY 2016 budget of $18.5 billion for NASA, building on the significant investments the administration has made in America’s space program over the past six years,” Administrator Bolden said to NASA workers and the media gathered at the KSC facility where Orion is being manufactured.

“These vehicles are not things just on paper anymore! This is tangible evidence of what you [NASA] have been doing these past few years.”

In the Neil Armstrong Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA's televised fiscal year 2016 budget rollout event.   Photo credit: NASA/Gianni Woods
In the Neil Armstrong Operations and Checkout Building high bay at NASA’s Kennedy Space Center in Florida, NASA Administrator Charlie Bolden delivers a “state of the agency” address on Feb 2, 2015 at NASA’s televised fiscal year 2016 budget rollout event. Photo credit: NASA/Gianni Woods

Bolden said the $18.5 Billion budget request will enable the continuation of core elements of NASA’s main programs including first launch of the new commercial crew vehicles to orbit in 2017, maintaining the Orion capsule and the Space Launch System (SLS) rocket to further NASA’s initiative to send ‘Humans to Mars’ in the 2030s, extending the International Space Station (ISS) into the next decade, and launching the James Webb Space Telescope in 2018. JWST is the long awaited successor to NASA’s Hubble Space Telescope.

“NASA is firmly on a journey to Mars. Make no mistake, this journey will help guide and define our generation.”

Funding is also provided to enable the manned Asteroid Redirect Mission (ARM) by around 2025, to continue development of the next Mars rover, and to continue formulation studies of a robotic mission to Jupiter’s icy moon Europa.

“That’s a half billion-dollar increase over last year’s enacted budget, and it is a clear vote of confidence in you – the employees of NASA – and the ambitious exploration program you are executing,” said Bolden.

Overall the additional $500 million for FY 2016 translates to a 2.7% increase over FY 2015. That compares to about a 6.4% proposed boost for the overall US Federal Budget amounting to $4 Trillion.

The Boeing CST-100 and the SpaceX Dragon V2 will restore the US capability to ferry astronauts to and from the International Space Station (ISS).

In September 2014, Bolden announced the selections of Boeing and SpaceX to continue development and certification of their proposed spaceships under NASA’s Commercial Crew Program (CCP) and Launch America initiative started back in 2010.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

Since the retirement of the Space Shuttle program in 2011, all NASA astronauts have been totally dependent on Russia and their Soyuz capsule as the sole source provider for seats to the ISS.

“The commercial crew vehicles are absolutely critical to our journey to Mars, absolutely critical. SpaceX and Boeing have set up operations here on the Space Coast, bringing jobs, energy and excitement about the future with them. They will increase crew safety and drive down costs.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

CCP gets a hefty and needed increase from $805 Million in FY 2015 to $1.244 Billion in FY 2016.

To date the Congress has not fully funded the Administration’s CCP funding requests, since its inception in 2010.

The significant budget slashes amounting to 50% or more by Congress, have forced NASA to delay the first commercial crew flights of the private ‘space taxis’ from 2015 to 2017.

As a result, NASA has also been forced to continue paying the Russians for crew flights aboard the Soyuz that now cost over $70 million each under the latest contract signed with Roscosmos, the Russian Federal Space Agency.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

Bolden has repeatedly stated that NASA’s overriding goal is to send astronauts to Mars in the 2030s.

To accomplish the ‘Journey to Mars’ NASA is developing the Orion deep space crew capsule and mammoth SLS rocket.

However, both programs had their budgets cut in the FY 2016 proposal compared to FY 2015. The 2015 combined total of $3.245 Billion is reduced in 2016 to $2.863 Billion, or over 10%.

The first test flight of an unmanned Orion atop the SLS is now slated for liftoff on Nov. 2018, following NASA’s announcement of a launch delay from the prior target of December 2017.

Since the Journey to Mars goal is already underfunded, significant cuts will hinder progress.

Orion just completed its nearly flawless maiden unmanned test flight in December 2014 on the Exploration Flight Test-1 (EFT-1) mission.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

There are some losers in the new budget as well.

Rather incomprehensibly funding for the long lived Opportunity Mars Exploration Rover is zeroed out in 2016.

This comes despite the fact that the renowned robot just reached the summit of a Martian mountain at Cape Tribulation and is now less than 200 meters from a science goldmine of water altered minerals.

NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater's western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge.  This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized.  Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com
NASA’s Opportunity Mars rover captures sweeping panoramic vista near the ridgeline of 22 km (14 mi) wide Endeavour Crater’s western rim. The center is southeastward and the distant rim is visible in the center. An outcrop area targeted for the rover to study is at right of ridge. This navcam panorama was stitched from images taken on May 10, 2014 (Sol 3659) and colorized. Credit: NASA/JPL/Cornell/Marco Di Lorenzo/Ken Kremer-kenkremer.com

Funding for the Lunar Reconnaissance Orbiter (LRO) is also zeroed out in FY 2016.

Both missions continue to function quite well with very valuable science returns. They were also zeroed out in FY 2015 but received continued funding after a senior level science review.

So their ultimate fate is unknown at this time.

Overall, Bolden was very upbeat about NASA’s future.

“I can unequivocally say that the state of NASA is strong,” Bolden said.

He concluded his remarks saying:

“Because of the dedication and determination of each and every one of you in our NASA Family, America’s space program is not just alive, it is thriving! Together with our commercial and international partners, academia and entrepreneurs, we’re launching the future. With the continued support of the Administration, the Congress and the American people, we’ll all get there together.”

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

NASA, Boeing, and SpaceX to Launch 1st Commercial Crew Ships to Space Station in 2017

After a hiatus of six long years, US astronauts will finally launch to space in a revolutionary new pair of private crew capsules under development by Boeing and SpaceX, starting in 2017, that will end our sole source reliance on the Russians for launching our astronauts to the International Space Station (ISS).

Two years from now, crews will start flying to space aboard the first US commercial spaceships, launching atop US rockets from US soil, said officials from Boeing, SpaceX, and NASA at a joint news conference on Monday, Jan. 26. The human rated spaceships – also known as “space taxis” – are being designed and manufactured under the auspices of NASA’s Commercial Crew Program (CCP).

A two person mixed crew of NASA astronauts and company test pilots will fly on the first test flights going to the space station in 2017.

The goal of NASA’s Commercial Crew Program, underway since 2010, has been to develop safe, reliable, and cost-effective spaceships that will ferry astronauts to and from the massive orbiting lab complex.

“It’s an incredible testament to American ingenuity and know-how, and an extraordinary validation of the vision we laid out just a few years ago as we prepared for the long-planned retirement of the space shuttle,” said NASA Administrator Charlie Bolden during the briefing at the agency’s Johnson Space Center in Houston. Bolden is a four time veteran space shuttle astronaut.

“This work is part of a vital strategy to equip our nation with the technologies for the future and inspire a new generation of explorers to take the next giant leap for America.”

NASA's Stephanie Schierholz introduces the panel of Johnson Space Center Director Dr. Ellen Ochoa, seated, left, NASA Administrator Charles Bolden, Commercial Crew Program Manager Kathy Lueders, Boeing's John Elbon, SpaceX's Gwynne Shotwell and NASA astronaut Mike Fincke.  Credit:  NASA TV
NASA’s Stephanie Schierholz introduces the panel of Johnson Space Center Director Dr. Ellen Ochoa, seated, left, NASA Administrator Charles Bolden, Commercial Crew Program Manager Kathy Lueders, Boeing’s John Elbon, SpaceX’s Gwynne Shotwell, and NASA astronaut Mike Fincke at Jan. 26 commercial crew new conference. Credit: NASA TV

“We have been working overtime to get Americans back to space from US soil and end US reliance on Russia,” Bolden added. “My job is to ensure we get Americans back to space as soon as possible and safely.”

“We have been in-sourcing space jobs back to the US.”

“To do this we need for Congress to approve full funding for the Commercial Crew Program!”

“This and the ISS are a springboard to going beyond Earth. All this we are doing will enable us to get Humans to Mars!”

However – severe budget cuts by Congress forced NASA into a two year delay in the first commercial crew flights from 2015 to 2017 – and also forced NASA to pay hundreds of millions of more dollars to the Russians for crews seats instead of employing American aerospace workers.

On Sept. 16, 2014, Administrator Bolden announced that Boeing and SpaceX had won the high stakes and history making NASA competition to build the first ever private “space taxis” to launch American and partner astronauts to the ISS and restore America’s capability to launch our crews from American soil for the first time since 2011.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

During the Sept. 16 briefing at the Kennedy Space Center, Bolden announced at that time that contracts worth a total of $6.8 Billion were awarded to Boeing to build the manned CST-100 and to SpaceX to build the manned Dragon V2.

Boeing was awarded the larger share of the crew vehicle contract valued at $4.2 Billion while SpaceX was awarded a lesser amount valued at $2.6 Billion.

For extensive further details about Boeing’s CST-100 manned capsule, be sure to read my exclusive 2 part interview with Chris Ferguson, NASA’s final shuttle commander and now Boeing’s Commercial Crew Director: here and here.

And read about my visit to the full scale CST-100 mockup at its manufacturing facility at KSC – here and here.

B8SsB9UCQAElkbJ.jpg large

But the awards were briefly put on hold when the third bidder, Sierra Nevada Corp, protested the decision and thereby prevented NASA from discussing the awards until the issue was resolved by the General Accounting Office (GAO) earlier this month in favor of NASA.

Everyone involved is now free to speak about the awards and how they were decided.

Each company must successfully achieve a set of 10 vehicle and program milestones agreed to with NASA, as well as meeting strict certification and safety standards.

“There are launch pads out there already being upgraded and there is hardware already being delivered,” said Kathy Lueders, manager of the Kennedy Space Center-based Commercial Crew Program.

“Both companies have already accomplished their first milestones.”

Every American astronaut has been totally reliant on the Russians and their three person Soyuz capsules for seats to launch to the ISS since the forced retirement of NASA’s Space Shuttle program in July 2011 following the final blastoff of orbiter Atlantis on the STS-135 mission.

Under the latest crew flight deal signed with Roscosmos [the Russian Federal Space Agency], each astronaut seat costs over $70 million.

“I don’t ever want to have to write another check to Roscosmos after 2017, hopefully,” said Bolden.

Under NASA’s commercial crew contracts, the average cost to fly US astronauts on the Dragon and CST-100 is $58 million vs. over $70 million on the Russian Soyuz.

At the briefing, Bolden indicated he was hopeful Congress would be more supportive of the program in the coming 2016 budget cycle than in the past that has already resulted in a 2 year delay in the first flights.

“Congress has started to understand the critical importance of commercial crew and cargo. They’ve seen, as a result of the performance of our providers, that this is not a hoax, it’s not a myth, it’s not a dream,” said Bolden.

“It’s something that’s really happening. I am optimistic that the Congress will accept the President’s proposal for commercial crew for 2016.”

The first unmanned test flights of the SpaceX Dragon V2 and Boeing CST-100 could take place by late 2016 or early 2017 respectively. Manned flights to the ISS would follow soon thereafter by the spring and summer of 2017.

Asked at the Jan. 26 briefing if he would fly aboard the private space ships, Administrator Bolden said:

“Yes. I can tell you that I would hop in a Dragon or a CST-100 in a heartbeat.”

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Boeing’s plans for the CST-100 involve conducting a pad abort test in February 2017, followed by an uncrewed orbital flight test in April 2017, and then a crewed flight with a Boeing test pilot and a NASA astronaut in July 2017, as outlined at the briefing by John Elbon, vice president and general manager of Boeing’s Space Exploration division.

“It’s a very exciting time with alot in development on the ISS, SLS, and Commercial Crew. Never before in the history of human spaceflight has there been so much going on all at once,” said John Elbon. “NASA’s exploring places we didn’t even know existed 100 years ago.”

“We are building the CST-100 structural test article.”

Meet Dragon V2 - SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014 for worldwide unveiling of SpaceX's new astronaut transporter for NASA. Credit: SpaceX
Meet Dragon V2 – SpaceX CEO Elon pulls the curtain off manned Dragon V2 on May 29, 2014, for worldwide unveiling of SpaceX’s new astronaut transporter for NASA. Credit: SpaceX

SpaceX’s plans for the Dragon V2 were outlined by Gwynne Shotwell, president of SpaceX.

“The Dragon V2 builds on the cargo Dragon. First up is a pad abort in about a month [at Cape Canaveral], then an in-flight abort test later this year [at Vandenberg to finish up development work from the prior CCiCAP phase],” said Shotwell.

“An uncrewed flight test is planned for late 2016 followed by a crewed flight test in early 2017.”

“We understand the incredible responsibility we’ve been given to carry crew. We should fly over 50 Falcon 9’s before crewed flight.”

Both the Boeing CST 100 and SpaceX Dragon V2 will launch from the Florida Space Coast, home to all US astronaut flights since the dawn of the space age.

The Boeing CST-100 will launch atop a human rated United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The SpaceX Dragon will launch atop a human rated Falcon 9 v1.1 rocket from neighboring Space Launch Complex 40 at the Cape.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Boeing’s commercial CST-100 'Space Taxi' will carry a crew of five astronauts to low Earth orbit and the ISS from US soil.   Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014 at its planned manufacturing facility at the Kennedy Space Center in Florida.  Credit: Ken Kremer - kenkremer.com
Boeing’s commercial CST-100 “Space Taxi” will carry a crew of five astronauts to low Earth orbit and the ISS from US soil. Mockup with astronaut mannequins seated below pilot console and Samsung tablets was unveiled on June 9, 2014, at its planned manufacturing facility at the Kennedy Space Center in Florida. Credit: Ken Kremer – kenkremer.com
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis

Falcon Heavy Rocket Launch and Booster Recovery Featured in Cool New SpaceX Animation

SpaceX released a cool new animation today, Jan. 27, showing an updated look at their Falcon Heavy rocket and plans for booster recovery. See below.

The Falcon Heavy is the brainchild of billionaire entrepreneur Elon Musk, SpaceX CEO and founder, and illustrates his moving forward with the firm’s next giant leap in spaceflight.

The rocket is designed to lift over 53 tons (117,00 pounds) to orbit and could one day launch astronauts to the Moon and Mars.

The commercial Falcon Heavy rocket has been under development by SpaceX for several years and the initial launch is now planned for later this year from Launch Complex 39A at the Kennedy Space Center (KSC) in Florida.

The new rocket is comprised of three Falcon 9 cores.

The Falcon Heavy will be the most powerful rocket developed since NASA’s Saturn V rocket that hurled NASA’s Apollo astronauts to the Moon in the 1960s and 1970s – including the first manned landing on the Lunar surface by Neil Armstrong and Buzz Aldrin in July 1969.

Here is the updated animation of the SpaceX Falcon Heavy flight and booster recovery:

Video Caption: Animation of SpaceX Falcon Heavy launch and booster recovery. Credit: SpaceX

The video shows the launch of the triple barreled Falcon Heavy from Launch Complex 39A at NASA’s Kennedy Space Center in Florida. Then it transitions to the recovery of all three boosters by a guided descent back to a soft touchdown on land in the Cape Canaveral/Kennedy Space Center area.

SpaceX, headquartered in Hawthorne, CA, signed a long term lease with NASA in April 2014 to operate seaside pad 39A as a commercial launch facility for launching the Falcon Heavy as well as the manned Dragon V2 atop SpaceX’s man-rated Falcon 9 booster.

Launch Complex 39A has sat dormant for over three years since the blastoff of the final shuttle mission STS-135 in July 2011 on a mission to the International Space Station (ISS).

Launch Pad 39A has lain dormant save dismantling since the final shuttle launch on the STS-135 mission in July 2011.  Not a single rocket has rolled up this ramp at the Kennedy Space Center in nearly 3 years. SpaceX has now leased Pad 39A from NASA and American rockets will thunder aloft again with Falcon rocket boosters starting in 2015. Credit: Ken Kremer/kenkremer.com
Launch Pad 39A has lain dormant, save dismantling, since the final shuttle launch on the STS-135 mission in July 2011. Not a single rocket has rolled up this ramp at the Kennedy Space Center in over 3 years. SpaceX has now leased Pad 39A from NASA and American rockets will thunder aloft again with Falcon rocket boosters starting in 2015. Credit: Ken Kremer/kenkremer.com

SpaceX is now renovating and modifying the pad as well as the Fixed and Mobile Service Structures, RSS and FSS. They will maintain and operate Pad 39A at their own expense, with no US federal funding from NASA.

When it does launch, the liquid fueled Falcon Heavy will become the most powerful rocket in the world according to SpaceX, generating nearly four million pounds of liftoff thrust from 27 Merlin 1D engines. It will then significantly exceeding the power of the Delta IV Heavy manufactured by competitor United Launch Alliance (ULA), which most recently was used to successfully launch and recover NASA’s Orion crew capsule on its maiden unmanned flight in Dec. 2014

STS-135: Last launch from Launch Complex 39A. NASA’s 135th and final shuttle mission takes flight on July 8, 2011 at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com
STS-135: Last launch from Launch Complex 39A.
NASA’s 135th and final shuttle mission takes flight on July 8, 2011, at 11:29 a.m. from the Kennedy Space Center in Florida bound for the ISS and the high frontier with Chris Ferguson as Space Shuttle Commander. Credit: Ken Kremer/kenkremer.com

SpaceX recently completed a largely successful and history making first attempt to recover a Falcon 9 booster on an ocean-going “drone ship.” The rocket nearly made a pinpoint landing on the ship but was destroyed in the final moments when control was lost due to a loss of hydraulic fluid.

Read my story with a SpaceX video – here – that vividly illustrates what SpaceX is attempting to accomplish by recovering and ultimately reusing the boosters in order to dramatically cut the cost of access to space.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters, including Universe Today, in Cocoa Beach, FL, during prior SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

NASA Orders Restart to Commercial Space Taxi Work

Declaring that the future survival of the International Space Station (ISS) was “jeopardized,” NASA issued a statement late Thursday, Oct. 9, ordering Boeing and SpaceX to restart work to develop commercial crew vehicles under the Commercial Crew Transportation Capability (CCtCap) contracts awarded to each firm on Sept. 16.

NASA took this action despite a protest filed with the U.S. Government Accountability Office (GAO) by the losing commercial crew bidder, Sierra Nevada Corporation.

On Sept. 26, NASA had directed Boeing and SpaceX to “suspend performance of the contracts” in response to the GAO protest filed by Sierra Nevada Corporation.

NASA told Boeing and SpaceX to immediately resume work on their astronaut space taxis under “statutory authority available to NASA.”

SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014.  Credit: NASA
SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014. Credit: NASA

It’s been a wild twist of events ever since NASA Administrator Charles Bolden announced that Boeing and SpaceX had won the high stakes and history making NASA competition to build the first ever private ‘space taxis’ to launch American astronauts to the ISS and restore America’s capability to launch our crews from American soil for the first time since 2011.

Bolden personally made the historic announcement of NASA’s commercial crew contract winners to build America’s next human rated spaceships at the Kennedy Space Center (KSC) on Wednesday, Sept. 16 at a briefing I attended at the press site.

Barely ten days later NASA told Boeing and SpaceX to stop work while the GAO reviews the SNC protest by a Jan 5, 2015, deadline.

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

In the meantime, NASA decided that the delay in the commercial crew effort was untenable and posed risks to the ISS, crew operations and U.S. commitments under international agreements.

Therefore NASA exercised its statutory authority to “avoid significant adverse consequences.”

Here is the full text of the NASA’s Oct. 9 statement:

“On Oct. 9, under statutory authority available to it, NASA has decided to proceed with the Commercial Crew Transportation Capability (CCtCap) contracts awarded to The Boeing Company and Space Exploration Technologies Corp. notwithstanding the bid protest filed at the U.S. Government Accountability Office by Sierra Nevada Corporation. The agency recognizes that failure to provide the CCtCap transportation service as soon as possible poses risks to the International Space Station (ISS) crew, jeopardizes continued operation of the ISS, would delay meeting critical crew size requirements, and may result in the U.S. failing to perform the commitments it made in its international agreements. These considerations compelled NASA to use its statutory authority to avoid significant adverse consequences where contract performance remained suspended. NASA has determined that it best serves the United States to continue performance of the CCtCap contracts that will enable safe and reliable travel to and from the ISS from the United States on American spacecraft and end the nation’s sole reliance on Russia for such transportation.”

The ‘space taxi’ contracts to build the Boeing CST-100 and SpaceX Dragon V2 spaceships are worth a total of $6.8 Billion, with the goal to end the nation’s sole source reliance on Russia in 2017.

Boeing was awarded the larger share of the contract valued at $4.2 Billion while SpaceX was awarded a lesser amount valued at $2.6 Billion.

Both spaceships are capsule design with parachute assisted landings. The third competitor involving Sierra Nevada’s Dream Chaser mini-shuttle offering runway landings was not selected for further development.

“From day one, the Obama Administration made clear that the greatest nation on Earth should not be dependent on other nations to get into space,” Bolden told reporters at the agency’s Kennedy Space Center in Florida, on Sept 16.

“Thanks to the leadership of President Obama, the hard work of our NASA and industry teams, and support from Congress, today we are one step closer to launching our astronauts from U.S. soil on American spacecraft and ending the nation’s sole reliance on Russia by 2017. Turning over low-Earth orbit transportation to private industry will also allow NASA to focus on an even more ambitious mission – sending humans to Mars.”

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled a full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014, at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

Both the Boeing CST 100 and SpaceX Dragon V2 will launch from the Florida Space Coast, home to all US astronaut flights since the dawn of the space age.

The Boeing CST-100 will launch atop a man rated United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The SpaceX Dragon will launch atop a man rated Falcon 9 v1.1 rocket from neighboring Space Launch Complex 40 at the Cape.

Stay tuned here for Ken’s continuing Orion and Earth and planetary science and human spaceflight news.

Ken Kremer

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

…………….

Learn more about Commercial Space Taxis, Orion and NASA Human and Robotic Spaceflight at Ken’s upcoming presentations

Oct 14: “What’s the Future of America’s Human Spaceflight Program with Orion and Commercial Astronaut Taxis” & “Antares/Cygnus ISS Rocket Launches from Virginia”; Princeton University, Amateur Astronomers Assoc of Princeton (AAAP), Princeton, NJ, 7:30 PM

Oct 23/24: “Antares/Cygnus ISS Rocket Launch from Virginia”; Rodeway Inn, Chincoteague, VA

Boeing and SpaceX Win NASA’s ‘Space Taxi’ Contracts for Space Station Flights

KENNEDY SPACE CENTER, FL – NASA Administrator Charles Bolden announced that Boeing and SpaceX have won the high stakes and history making NASA competition to build the first ever private ‘space taxis’ to launch American astronauts to the International Space Station (ISS) and restore America’s capability to launch our crews from American soil for the first time since 2011.

Bolden made the historic announcement of NASA’s commercial crew contract winners to build America’s next human rated spaceships at the Kennedy Space Center (KSC) on Wednesday, Sept. 16 at a briefing for reporters.

The ‘space taxi’ contract to build the Boeing CST-100 and SpaceX Dragon V2 spaceships is worth a total of $6.8 Billion, with the goal to end the nation’s sole source reliance on Russia in 2017.

SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014.  Credit: NASA
SpaceX Dragon V2 next generation astronaut spacecraft unveiled May 29, 2014. Credit: NASA

Boeing was awarded the larger share of the contract valued at $4.2 Billion while SpaceX was awarded a lesser amount valued at $2.6 Billion.

“From day one, the Obama Administration made clear that the greatest nation on Earth should not be dependent on other nations to get into space,” Bolden told reporters at the agency’s Kennedy Space Center in Florida.

“Thanks to the leadership of President Obama, the hard work of our NASA and industry teams, and support from Congress, today we are one step closer to launching our astronauts from U.S. soil on American spacecraft and ending the nation’s sole reliance on Russia by 2017. Turning over low-Earth orbit transportation to private industry will also allow NASA to focus on an even more ambitious mission – sending humans to Mars.”

NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden (left) announces the winners of NASA’s Commercial Crew Program development effort to build America’s next human spaceships launching from Florida to the International Space Station. Speaking from Kennedy’s Press Site, Bolden announced the contract award to Boeing and SpaceX to complete the design of the CST-100 and Crew Dragon spacecraft. Former astronaut Bob Cabana, center, director of NASA’s Kennedy Space Center in Florida, Kathy Lueders, manager of the agency’s Commercial Crew Program, and former International Space Station Commander Mike Fincke also took part in the announcement. Credit: Ken Kremer- kenkremer.com

The awards from NASA’s Commercial Crew Program (CCP) offices will continue to be implemented as a public-private partnership and are the fruition of NASA’s strategy to foster the development of privately built human spaceships that began in 2010.

Boeing unveiled full scale mockup of their commercial  CST-100  'Space Taxi' on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida.  The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil.   Credit: Ken Kremer - kenkremer.com
Boeing unveiled full scale mockup of their commercial CST-100 ‘Space Taxi’ on June 9, 2014 at its intended manufacturing facility at the Kennedy Space Center in Florida. The private vehicle will launch US astronauts to low Earth orbit and the ISS from US soil. Credit: Ken Kremer – kenkremer.com

Both spaceships are capsule design with parachute assisted landings. The third competitor involving Sierra Nevada’s Dream Chaser mini-shuttle offering runway landings was not selected for further development.

“We are excited to see our industry partners close in on operational flights to the International Space Station, an extraordinary feat industry and the NASA family began just four years ago,” said Kathy Lueders, manager of NASA’s Commercial Crew Program.

“This space agency has long been a technology innovator, and now we also can say we are an American business innovator, spurring job creation and opening up new markets to the private sector. The agency and our partners have many important steps to finish, but we have shown we can do the tough work required and excel in ways few would dare to hope.”

Both the Boeing CST 100 and SpaceX Dragon V2 will launch from the Florida Space Coast, home to all US astronaut flight since the dawn of the space age.

The Boeing CST-100 will launch atop a man rated United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station, FL.

The SpaceX Dragon will launch atop a man rated Falcon 9 v1.1 rocket from neighboring Space Launch Complex 40 at the Cape.

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Boeing and SpaceX issued the following statements after the awards were announced.

“Boeing has been part of every American human space flight program, and we’re honored that NASA has chosen us to continue that legacy,” said John Elbon, Boeing vice president and general manager, Space Exploration, in a statement in response NASA’s award.

“The CST-100 offers NASA the most cost-effective, safe and innovative solution to U.S.-based access to low-Earth orbit.”

“Under the Commercial Crew Transportation (CCtCap) phase of the program, Boeing will build three CST-100s at the company’s Commercial Crew Processing Facility at Kennedy Space Center in Florida. The spacecraft will undergo a pad-abort test in 2016 and an uncrewed flight in early 2017, leading up to the first crewed flight to the ISS in mid-2017.”

“SpaceX is deeply honored by the trust NASA has placed in us. We welcome today’s decision and the mission it advances with gratitude and seriousness of purpose,” said Elon Musk, CEO & Chief Designer, SpaceX, in a statement in response NASA’s award.

“It is a vital step in a journey that will ultimately take us to the stars and make humanity a multi-planet species.”

Stay tuned here for Ken’s continuing Boeing, SpaceX, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

launch-02_0

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com

Boeing Completes All CST-100 Commercial Crew CCiCAP Milestones on Time and on Budget for NASA – Ahead of Competitors

In the ‘new race to space’ to restore our capability to launch Americans to orbit from American soil with an American-built commercial ‘space taxi’ as rapidly and efficiently as possible, Boeing has moved to the front of the pack with their CST-100 spaceship by completing all their assigned NASA milestones on time and on budget in the current phase of the agency’s Commercial Crew Program (CCP).

Boeing is the first, and thus far only one of the three competitors (including Sierra Nevada Corp. and SpaceX) to complete all their assigned milestone task requirements under NASA’s Commercial Crew Integrated Capability (CCiCap) initiative funded under the auspices of the agency’s Commercial Crew Program.

The CST-100 is a privately built, man rated capsule being developed with funding from NASA via the commercial crew initiative in a public/private partnership between NASA and private industry.

The overriding goal is restart America’s capability to reliably launch our astronauts from US territory to low-Earth orbit (LEO) and the International Space Station (ISS) by 2017.

Hatch opening to Boeing’s commercial CST-100 crew transporter.  Credit: Ken Kremer - kenkremer.com
Hatch opening to Boeing’s commercial CST-100 crew transporter. Credit: Ken Kremer – kenkremer.com

Private space taxis are the fastest and cheapest way to accomplish that and end the gap in indigenous US human spaceflight launches.

Since the forced shutdown of NASA’s Space Shuttle program following its final flight in 2011, US astronauts have been 100% dependent on the Russians and their cramped but effective Soyuz capsule for rides to the station and back – at a cost exceeding $70 million per seat.

Boeing announced that NASA approved the completion of the final two commercial crew milestones contracted to Boeing for the CST-100 development.

These last two milestones are the Phase Two Spacecraft Safety Review of its Crew Space Transportation (CST)-100 spacecraft and the Critical Design Review (CDR) of its integrated systems.

The CDR milestone was completed in July and comprised 44 individual CDRs including propulsion, software, avionics, landing, power and docking systems.

The Phase Two Spacecraft Safety Review included an overall hazard analysis of the spacecraft, identifying life-threatening situations and ensuring that the current design mitigated any safety risks, according to Boeing.

“The challenge of a CDR is to ensure all the pieces and sub-systems are working together,” said John Mulholland, Boeing Commercial Crew program manager, in a statement.

“Integration of these systems is key. Now we look forward to bringing the CST-100 to life.”

Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing
Boeing CST-100 manned space capsule in free flight in low Earth orbit will transport astronaut crews to the International Space Station. Credit: Boeing

Passing the CDR and completing all the NASA milestone requirements is a significant step leading to the final integrated design for the CST-100 space taxi, ground systems and Atlas V launcher that will boost it to Earth orbit from Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

The Sierra Nevada Dream Chaser and SpaceX Dragon V2 and are also receiving funds from NASA’s commercial crew program.

All three American aerospace firms vying for the multibillion dollar NASA contract to build an American ‘space taxi’ to ferry US astronauts to the International Space Station and back as soon as 2017.

NASA’s Commercial Crew Program office is expected to announce the winner(s) of the high stakes, multibillion dollar contract to build America’s next crew vehicles in the next program phase, known as Commercial Crew Transportation Capability (CCtCap), “sometime around the end of August/September,” NASA News spokesman Allard Beutel confirmed to me.

“We don’t have a scheduled date for the commercial crew award(s).”

There will be 1 or more CCtCAP winners.

Boeing CST-100 capsule interior up close.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 capsule interior up close. Credit: Ken Kremer – kenkremer.com

On June 9, 2014, Boeing revealed the design of their CST-100 astronaut spaceliner by unveiling a full scale mockup of their commercial ‘space taxi’ at the new home of its future manufacturing site at the Kennedy Space Center (KSC) located inside a refurbished facility that most recently was used to prepare NASA’s space shuttle orbiters for assembly missions to the ISS.

The CST-100 crew transporter was unveiled at the invitation only ceremony and media event held inside the gleaming white and completely renovated NASA processing hangar known as Orbiter Processing Facility-3 (OPF-3) – and attended by Universe Today.

The huge 64,000 square foot facility has sat dormant since the shuttles were retired following their final flight (STS-135) in July 2011 and which was commanded by Chris Ferguson, who now serves as director of Boeing’s Crew and Mission Operations.

Ferguson and the Boeing team are determined to get Americans back into space from American soil with American rockets.

Read my exclusive, in depth one-on-one interviews with Chris Ferguson – America’s last shuttle commander – about the CST-100; here and here.

Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017.  Ferguson is now  Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding.  Credit: NASA/Boeing
Chris Ferguson, last Space Shuttle Atlantis commander, tests the Boeing CST-100 capsule which may fly US astronauts to the International Space Station in 2017. Ferguson is now Boeing’s director of Crew and Mission Operations for the Commercial Crew Program vying for NASA funding. Credit: NASA/Boeing

Boeing’s philosophy is to make the CST-100 a commercial endeavor, as simple and cost effective as possible in order to quickly kick start US human spaceflight efforts. It’s based on proven technologies drawing on Boeing’s 100 year heritage in aviation and space.

“The CST-100, it’s a simple ride up to and back from space,” Ferguson told me. “So it doesn’t need to be luxurious. It’s an ascent and reentry vehicle – and that’s all!”

So the CST-100 is basically a taxi up and a taxi down from LEO. NASA’s complementary human space flight program involving the Orion crew vehicle is designed for deep space exploration.

The vehicle includes five recliner seats, a hatch and windows, the pilots control console with several attached Samsung tablets for crew interfaces with wireless internet, a docking port to the ISS and ample space for 220 kilograms of cargo storage of an array of equipment, gear and science experiments depending on NASA’s allotment choices.

The interior features Boeing’s LED Sky Lighting with an adjustable blue hue based on its 787 Dreamliner airplanes to enhance the ambience for the crew.

Boeing CST-100 crew capsule will carry five person crews to the ISS.  Credit: Ken Kremer - kenkremer.com
Boeing CST-100 crew capsule will carry five person crews to the ISS. Credit: Ken Kremer – kenkremer.com

The reusable capsule will launch atop a man rated United Launch Alliance (ULA) Atlas V rocket.

“The first unmanned orbital test flight is planned in January 2017… and may go to the station,” Ferguson told me during our exclusive interview about Boeing’s CST-100 plans.

Since 2010, NASA has spent over $1.5 billion on the commercial crew effort.

Boeing has received the largest share of funding in the current CCiCAP phase amounting to about $480 million. SpaceX received $460 million for the Dragon V2 and Sierra Nevada Corp. (SNC) has received a half award of $227.5 million for the Dream Chaser mini-shuttle.

SNC will be the next company to complete all of NASA’s milestones this Fall, SNC VP Mark Sirangelo told me in an exclusive interview. SpaceX will be the final company finishing its milestones sometime in 2015.

Stay tuned here for Ken’s continuing Boeing, Sierra Nevada, SpaceX, Orbital Sciences, commercial space, Orion, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

Boeing's CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA's Kennedy Space Center. Credit: Ken Kremer - kenkremer.com
Boeing’s CST-100 project engineer Tony Castilleja describes the capsule during a fascinating interview with Ken Kremer/Universe Today on June 9, 2014 while sitting inside the full scale mockup of the Boeing CST-100 space taxi during unveiling ceremony at NASA’s Kennedy Space Center. Credit: Ken Kremer – kenkremer.com

Enter the Dragon: First Look Inside SpaceX’s New Crew Transporter to Orbit – Photos

Would you ‘Enter the Dragon’?
First look inside SpaceX Dragon V2 next generation astronaut spacecraft unveiled by CEO Elon Musk on May 29, 2014. Credit: Robert Fisher/AmericaSpace[/caption]

Would you like to ‘Enter the Dragon’ for an up close look inside SpaceX’s new ‘V2’ crew transport ship to Earth orbit and the space station?

We’ve shown you lots of exterior shots of SpaceX’s next generation manned Dragon V2 spacecraft after Billionaire entrepreneur and SpaceX CEO Elon Musk pulled the curtain off to reveal his future plans for human spaceflight on May 29 during a live webcast from SpaceX HQ in Hawthorne, Calif.

And we’ve shown you the cool animation to see exactly ‘How it Works!’ from launch to landing.

Now we’ve compiled a stunning collection of imagery revealing what it’s like to actually stand within the gleaming walls of the futuristic Dragon spaceship from an astronauts perspective.

Check out the gallery of Dragon V2 imagery above and below.

Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX
Elon Musk seated inside Dragon V2 explaining consoles at unveiling on May 29, 2014. Credit: SpaceX

Experience this exciting new chapter of American ‘Commercial Human Spaceflight’ coming to fruition.

NASA’s Commercial Crew Program (CCP) is a public private partnership between NASA and a trio of amazing American aerospace companies – SpaceX, Boeing amd Sierra Nevada – to create inexpensive but reliable new astronaut spaceships to the High Frontier.

And NASA’s unprecedented commercial crew program is so far ahead of any international competitors that I think they’ll soon be knocking at the door and regret not investing in a similar insightful manner.

The goal is to get American’s back in space on American rockets from American soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to the International Space Station (ISS) and back.

Potential crew members check out the seats of the new SpaceX Dragon V2 next generation astronaut spacecraft. Credit:  Robert Fisher/America Space
Potential crew members check out the seats of the new SpaceX Dragon V2 next generation astronaut spacecraft. Credit: Robert Fisher/America Space

“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview – here.

SpaceX CEO Elon Musk pulls open the hatch to ;Enter the Dragon’.    Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk pulls open the hatch to ‘Enter the Dragon’. Credit: Robert Fisher/America Space

Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s CCP.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

The Dragon V2 spacecraft's seating arrangement with the control panel swung up to allow crewmembers to get into their seats. Once the crew is in place, the control panel swings down and locks in launch position. Credit: NASA/Dimitri Gerondidakis
The Dragon V2 spacecraft’s seating arrangement with the control panel swung up to allow crewmembers to get into their seats. Once the crew is in place, the control panel swings down and locks in launch position. Credit: NASA/Dimitri Gerondidakis

A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis
A look through the open hatch of the Dragon V2 reveals the layout and interior of the seven-crew capacity spacecraft. Credit: NASA/Dimitri Gerondidakis

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Meet SpaceX’s New Manned Dragon: Cool Animation Shows ‘How It Works’


Caption: Animation of SpaceX Dragon V2 astronaut transporter. Credit: SpaceX

Would you like to meet and fly aboard SpaceX’s next generation manned Dragon V2 spacecraft?

Well hop aboard for a ride, take a seat and prepare for the thrill of a lifetime to the International Space Station (ISS) and back.

Watch the cool animation above to see exactly ‘How it Works!’

Now you can experience the opening salvo in the exciting new chapter of ‘Commercial Human Spaceflight.’

The commercial crew effort is led by a trio of private American aerospace company’s (SpaceX, Boeing & Sierra Nevada) in an intimate partnership with NASA to get American’s back in space on American rockets from American Soil – rather than being totally dependent on Russian rocket technology and Soyuz capsules for astronaut rides to orbit.

“We need to have our own capability to get our crews to space. Commercial crew is really, really, really important,” NASA Administrator Charles Bolden told me in an exclusive interview.

Billionaire entrepreneur and SpaceX CEO Elon Musk let the curtain to the future drop on Thursday, May 29 to reveal his company’s new manned Dragon V2 astronaut transporter for all the world to see during a live streaming webcast direct from SpaceX’s state-of-the-art design and manufacturing facility and Headquarters in Hawthorne, CA.

And with a flair worthy of the premiere of a blockbuster Hollywood Science Fiction movie he unveiled the gum-dropped shaped Dragon V2 – and the lively animation. Although its not known if he’ll provide the crews with musical entertainment during the trip too.

As you’ll quickly notice watching the animation, the sleek styled V2 manned Dragon is a far cry ahead of the current V1 cargo Dragon.

“We wanted to take a big step in spacecraft technology. It is a big leap forward in technology and takes things to the next level,” said Musk.

The top of the V2 is equipped to open up and expose a docking probe so it’s able to dock autonomously at the ISS – and at the same port as NASA’s now retired space shuttle orbiters.

‘Catching a Dragon by the tail’- with the Canadian built robot arm as the stations astronauts like to say and berthing it at an Earth-facing port on the Harmony module, will be a thing of the past.

“No robotic arm necessary!” Musk explained.

SpaceX Dragon V2 docks at the ISS. Credit: SpaceX
SpaceX Dragon V2 docks at the ISS. Credit: SpaceX

And for departure there’s another big difference – powerful SuperDraco landing rockets for pinpoint touchdown accuracy rather than an ocean splashdown.

The animation shows a thrilling land landing back at the Kennedy Space Center launch base.

“An important characteristic of that is its ability to land anywhere on land, propulsively. It can land anywhere on Earth with the accuracy of a helicopter,” Musk said.

“I think that’s what a spaceship should be able to do.”

Musk and SpaceX are not alone aiming to get Americans back to space.

Boeing and Sierra Nevada are competing with SpaceX to build the next generation spaceship to ferry astronauts to and from the ISS by 2017 using seed money from NASA’s Commercial Crew Program in a public/private partnership.

The Boeing CST-100 and Sierra Nevada Dream Chaser ‘space taxis’ are also vying for funding in the next round of contracts to be awarded by NASA around late summer 2014.

Read my earlier “Dragon V2” unveiling event articles – here, here and here.

Enjoy!

SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014.  Credit:  Robert Fisher/America Space
SpaceX CEO Elon Musk unveils SpaceX Dragon V2 next generation astronaut spacecraft on May 29, 2014. Credit: Robert Fisher/America Space

Stay tuned here for Ken’s continuing SpaceX, Boeing, Sierra Nevada, Orbital Sciences, commercial space, Orion, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer