A Star Passed too Close and Tore Out a Chunk of a Protoplanetary Disk

Scientists have captured an intruder object disrupting the protoplanetary disk—birthplace of planets—in Z Canis Majors (Z CMa), a star in the Canis Majoris constellation. This artist’s impression shows the perturber leaving the star system, pulling a long stream of gas from the protoplanetary disk along with it. Observational data from the Subaru Telescope, Karl G. Jansky Very Large Array, and Atacama Large Millimeter/submillimeter Array suggest the intruder object was responsible for the creation of these gaseous streams, and its “visit” may have other as yet unknown impacts on the growth and development of planets in the star system. Credit: ALMA (ESO/NAOJ/NRAO), B. Saxton (NRAO/AUI/NSF)

When it comes to observing protoplanetary disks, the Atacama Large Millimetre/sub-millimetre Array (ALMA) is probably the champion. ALMA was the first telescope to peer inside the almost inscrutable protoplanetary disks surrounding young stars and watch planets forming. ALMA advanced our understanding of the planet-forming process, though our knowledge of the entire process is still in its infancy.

According to new observations, it looks like chaos and disorder are part of the process. Astronomers using ALMA have watched as a star got too close to one of these planet-forming disks, tearing a chunk away and distorting the disk’s shape.

What effect will it have on planetary formation?

Continue reading “A Star Passed too Close and Tore Out a Chunk of a Protoplanetary Disk”

Astronomers See a Newly Forming Planetary Disk That’s Continuing to Feed On Material from its Nebula

This false-colour image shows the filaments of accretion around the protostar [BHB2007] 1. The large structures are inflows of molecular gas (CO) nurturing the disk surrounding the protostar. The inset shows the dust emission from the disk, which is seen edge-on. The "holes" in the dust map represent an enormous ringed cavity seen (sideways) in the disk structure. Image Credit: MPE

Over the last few years, astronomers have observed distant solar systems in their early stages of growth. ALMA (Atacama Large Millimeter/submillimeter Array) has captured images of young stars and their disks of material. And in those disks, they’ve spotted the tell-tale gaps that signal the presence of growing young planets.

As they ramped up their efforts, astronomers were eventually able to spot the young planets themselves. All those observations helped confirm our understanding of how young solar systems form.

But more recent research adds another level of detail to the nebular hypothesis, which guides our understanding of solar system formation.

Continue reading “Astronomers See a Newly Forming Planetary Disk That’s Continuing to Feed On Material from its Nebula”