Scientists Tantalized as Dawn Yields Global Mineral and Topographic Maps of Ceres

Slowly but surely the mysteries of dwarf planet Ceres are being peeled back layer by layer as NASA’s Dawn spacecraft orbits lower and lower and gathers detailed measurements that have now yielded global mineral and topographic maps, tantalizing researchers with the best resolution ever.

The Dawn science team has been painstakingly stitching together the spectral and imaging products captured from the lowest orbit yet achieved into high resolution global maps of Ceres, released today Sept. 30, by NASA.

“Ceres continues to amaze, yet puzzle us, as we examine our multitude of images, spectra and now energetic particle bursts,” said Chris Russell, Dawn principal investigator at the University of California, Los Angeles, in a statement.

The color coded map above is providing researchers with valuable insights into the mineral composition of Ceres surface, as well as the relative ages of the surface features that were a near total mystery until Dawn arrived on March 6, 2015.

The false-color mineral map view combines images taken using infrared (920 nanometers), red (750 nanometers) and blue (440 nanometers) spectral filters.

“Redder colors indicate places on Ceres’ surface that reflect light strongly in the infrared, while bluish colors indicate enhanced reflectivity at short (bluer) wavelengths; green indicates places where albedo, or overall brightness, is strongly enhanced,” say officials.

“Scientists use this technique in order to highlight subtle color differences across Ceres, which would appear fairly uniform in natural color. This can provide valuable insights into the mineral composition of the surface, as well as the relative ages of surface features.”

Researchers say the mineral variations at Ceres “are more subtle than on Vesta, Dawn’s previous port of call.”

The asteroid Vesta was Dawn’s first orbital target and conducted extensive observations of the bizarre world for over a year in 2011 and 2012.

The Dawn team is meeting this week to review and publish the mission results so far at the European Planetary Science Conference in Nantes, France.

Dawn is Earth’s first probe in human history to explore any dwarf planet, the first to explore Ceres up close and the first to orbit two celestial bodies.

Ceres is a Texas-sized world, ranks as the largest object in the main asteroid belt between Mars and Jupiter, and may have a subsurface ocean of liquid water that could be hospitable to life.

This view from NASA's Dawn spacecraft is a color-coded topographic map of Occator crater on Ceres. Blue is the lowest elevation, and brown is the highest. The crater, which is home to the brightest spots on Ceres, is approximately 56 miles (90 kilometers wide).  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This view from NASA’s Dawn spacecraft is a color-coded topographic map of Occator crater on Ceres. Blue is the lowest elevation, and brown is the highest. The crater, which is home to the brightest spots on Ceres, is approximately 56 miles (90 kilometers wide). Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The newly released maps were created from data gathered at Dawn’s current science orbit, known as the High Altitude Mapping Orbit (HAMO) phase of the mission, during August and September.

At HAMO, Dawn is circling Ceres at an altitude of barely 915 miles (1,470 kilometers) above the heavily cratered surface.

“Dawn arrived in this third mapping orbit [HAMO] on Aug. 13. It began this third mapping phase on schedule on Aug. 17,” Dr. Marc Rayman, Dawn’s chief engineer and mission director based at NASA’s Jet Propulsion Laboratory, Pasadena, California, told Universe Today.

Each HAMO mapping orbit cycle lasts 11 days and consists of 14 orbits lasting 19 hours each. Ceres is entirely mapped during each of the 6 cycles. The third mapping cycle started on Sept. 9.

Dawn’ instruments, including the Framing Camera and Visible and Infrared Spectrometer (VIR) will be aimed at slightly different angles in each mapping cycle allowing the team to generate stereo views and construct 3-D maps.

“The emphasis during HAMO is to get good stereo data on the elevations of the surface topography and to get good high resolution clear and color data with the framing camera,” Russell told me.

“We are hoping to get lots of VIR IR data to help understand the composition of the surface better.”

“Dawn will use the color filters in its framing camera to record the sights in visible and infrared wavelengths,” notes Rayman.

The new maps at HAMO provide about three times better resolution than the images captured from its previous orbit in June, and nearly 10 times better than in the spacecraft’s initial orbit at Ceres in April and May.

This color-coded map from NASA's Dawn shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. The color scale extends about 5 miles (7.5 kilometers) below the reference surface in indigo to 5 miles (7.5 kilometers) above the reference surface in white.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This color-coded map from NASA’s Dawn shows the highs and lows of topography on the surface of dwarf planet Ceres. It is labeled with names of features approved by the International Astronomical Union. The color scale extends about 5 miles (7.5 kilometers) below the reference surface in indigo to 5 miles (7.5 kilometers) above the reference surface in white. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The science team also released a new color-coded topographic map annotated with over a dozen Cerean feature names recently approved by the IAU.

“The names for features on Ceres are all eponymous for agricultural spirits, deities and festivals from cultures around the world. These include Jaja, after the Abkhazian harvest goddess, and Ernutet, after the cobra-headed Egyptian harvest goddess. A 12-mile (20-kilometer) diameter mountain near Ceres’ north pole is now called Ysolo Mons, for an Albanian festival that marks the first day of the eggplant harvest.”

The biggest Cerean mystery of all remains the nature of the bright spots at Occator crater. It’s still under analysis and the team released a new color coded topographic map.

The imagery and other science data may point to evaporation of salty water as the source of the bright spots.

“Occasional water leakage on to the surface could leave salt there as the water would sublime,” Russell told me.

“The big picture that is emerging is that Ceres fills a unique niche,” Prof. Chris Russell, Dawn principal investigator told Universe Today exclusively.

“Ceres fills a unique niche between the cold icy bodies of the outer solar system, with their rock hard icy surfaces, and the water planets Mars and Earth that can support ice and water on their surfaces,” said Russell.

“The irregular shapes of craters on Ceres are especially interesting, resembling craters we see on Saturn’s icy moon Rhea,” says Carol Raymond, Dawn’s deputy principal investigator based at NASA’s Jet Propulsion Laboratory, Pasadena, California. “They are very different from the bowl-shaped craters on Vesta.”

This image was taken by NASA's Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image was taken by NASA’s Dawn spacecraft of dwarf planet Ceres on Feb. 19 from a distance of nearly 29,000 miles (46,000 km). It shows that the brightest spot on Ceres has a dimmer companion, which apparently lies in the same basin. See below for the wide view. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn was launched on September 27, 2007 by a United Launch Alliance (ULA) Delta II Heavy rocket from Space Launch Complex-17B (SLC-17B) at Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

This image, made using images taken by NASA's Dawn spacecraft during the mission's High Altitude Mapping Orbit (HAMO) phase, shows Occator crater on Ceres, home to a collection of intriguing bright spots.  Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
This image, made using images taken by NASA’s Dawn spacecraft during the mission’s High Altitude Mapping Orbit (HAMO) phase, shows Occator crater on Ceres, home to a collection of intriguing bright spots. Credits: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

10 Space Science Stories to Watch in 2015

A new Avengers movie. A reboot of the Star Wars franchise. The final installment of the Hunger Games. The Martian makes it to the big screen. Yup, even if the zombie apocalypse occurs in 2015, it’ll still be a great year. But trading science fiction for fact, we’re also on track for a spectacular year in space science and exploration as well.

Humanity will get its first good look at Ceres and Pluto, giving us science writers some new pics to use instead of the same half dozen blurry dots and artist’s conceptions. SpaceX will also attempt a daring landing on a sea platform, and long duration missions aboard the International Space Station will get underway. And key technology headed to space and on Earth may lead the way to opening up the window of gravitational wave astronomy on the universe. Here’s 10 sure-fire bets to watch for in the coming year from Universe Today:

Credit
LISA Pathfinder deployed at L1. Credit: ESA/Artist’s concept.

10. LISA Pathfinder

A precursor to a full-fledged gravitational wave detector in space, LISA Pathfinder will be launching atop a Vega rocket from Kourou, French Guiana in July 2015. LISA stands for the Laser Interferometer Space Antenna, and the Pathfinder mission will journey to the L1 Lagrange point between the Earth and the Sun to test key technologies. LISA Pathfinder will pave the way for the full fledged LISA space platform, a series of three free flying spacecraft proposed for launch in the 2030s.

Credit:
Looking down one of the arms of LIGO Hanford. Credit: Photo by author.

9. AdLIGO Goes Online

And speaking of gravitational waves, we may finally get the first direct detection of the same in 2015, when Advanced LIGO is set to go online. Comprised of two L-shaped detectors, one based in Livingston Louisiana, and another in Hanford Washington, AdLIGO will feature ten times the sensitivity of the original LIGO observatory. In fact, as was the case of the hunt for the Higgs-Boson by CERN, a non-detection of gravitational waves by AdLIGO would be a much stranger result!

Credit
A replica of the Hubble Space Telescope on display at the Kennedy Space Center. Credit: Photo by author.

8. Hubble Turns 25

Launched on April 24th, 1990 aboard the Space Shuttle Discovery, the Hubble Space Telescope celebrates 25 years in space in 2015. The final servicing mission in 2009 gave Hubble a reprieve from the space junk scrap heap, and the orbiting telescope is still going strong. Hubble has no less than pushed the limits in modern astronomy to become a modern icon of the space age.

Credit:
MESSENGER wraps up its mission in 2015. Credit: NASA/MESSENGER/JPL/APL.

7. The End of MESSENGER

NASA’s Mercury exploring spacecraft wraps up its mission next year. Launched in 2004, MESSENGER arrived in orbit around Mercury after a series of flybys on March 18th, 2011. MESSENGER has mapped the innermost world in detail, and studied the space environment and geology of Mercury. In late March 2015, MESSENGER will achieve one final first, when it impacts the surface of Mercury at the end of its extended mission.

Credit:
Akatsuki on Earth prior to departure. Credit: JAXA.

6. Akatsuki at Venus

This Japanese spacecraft missed orbital insertion a few years back, but gets a second chance at life in 2015. Launched in 2010 atop an H-IIA rocket from the Tanegashima Space Center in Japan, Akatsuki failed to enter orbit around Venus at the end of 2010, and instead headed out for a heliocentric path around the Sun. Some quick thinking by JAXA engineers led to a plan to attempt to place Akatsuki in Venusian orbit in November 2015. This would be a first for the Japanese space agency, as attempts by JAXA at placing a spacecraft in orbit around another planet – including the Mars Nozomi probe – have thus far failed.

autonomous_spaceport_drone_ship
The target for the Falcon-9 first stage later next week. Credit: SpaceX.

5. SpaceX to Attempt to Land on a Sea Platform

It’ll definitely rock if they pull it off next week: on January 6th, a SpaceX Falcon 9 rocket will lift off from Cape Canaveral with its Dragon spacecraft headed to the International Space Station on mission CRS-5. Sure, these resupply missions are becoming routine, but after liftoff, SpaceX is attempting something new and daring: landing the Falcon-9 first stage Buck Rodgers style, “fins first” on a floating barge. This is the next step in ultimately proving the feasibility of having the rocket fly back to the launch site for eventual reuse. If nothing else, expect some stunning video of the attempt soon!

credit
An artist’s concept of an asteroid retrieval mission. Credit: NASA.

4. NASA to Decide on an Asteroid Mission

Some major decisions as to the fate and the future of manned space exploration are due next year, as NASA is expected to decide on the course of action for its Asteroid Redirect Mission. The current timeline calls for the test of the SLS rocket in 2018, and the launch of a spacecraft to recover an asteroid and place it in orbit around the Moon in 2019. If all goes according to plan – a plan which could always shift with the political winds and future changes in administrations – we could see astronauts exploring a captured asteroid by the early 2020s.

Credit: NASA/Roscomos.
Astronaut Scott Kelly (left), and cosmonaut Mikhail Korniyenko. Credit: NASA/Roscomos.

3. Long Duration ISS Missions

Beginning in 2015, astronauts and cosmonauts will begin year-long stays aboard the ISS to study the effects of long duration space missions. In March of 2015, cosmonaut Mikhail Korniyenko and U.S. astronaut Scott Kelly will launch as part of Expedition 43 headed to the ISS. The Russians have conducted stays in space longer than a year aboard the Mir space station, but Kelly’s stay aboard the ISS will set a duration record for NASA astronauts. Perhaps, a simulated “Mars mission” aboard the ISS could be possible in the coming years?

credit
An artist’s concept of Dawn approaching 1 Ceres. Credit: NASA/JPL.

2. Dawn at Ceres

Fresh off of exploring Vesta, NASA’s Dawn spacecraft will become the first mission to enter orbit around a second object, the asteroid 1 Ceres next year in April 2015. The largest asteroid and the first object of its kind discovered on the first day of the 19th century, Ceres looks to be a fascinating world in its own right. Does it possess water ice? Active geology? Moons of its own? If Dawn’s performance at Vesta was any indication, we’re in for another exhilarating round of space exploration!

credit
And artist’s conception of New Horizons at Pluto. Credit: NASA/JPL/Thierry Lombry.

1. New Horizons at Pluto

An easy No. 1,we finally get our first good look at Pluto in July, as NASA’s New Horizons spacecraft flies less than 14,000 kilometres from the surface of the distant world. Launched in 2006, New Horizons will “thread the needle” between Pluto and Charon in a flurry of activity as it passes by. New Horizons will then turn back as it passes into the shadows of Pluto and Charon and actually view the two worlds as they occult the distant Sun. And from there, New Horizons will head out to explore Kuiper Belt Objects of opportunity.

And these are just the top stories that are slated to be big news in space in 2015. Remember, another Chelyabinsk meteor or the next big comet could drop by at any time… space news can be unpredictable, and its doubtless that 2015 will have lots more surprises in store.

 

 

A Triple Occultation Bonanza: A Challenging Series of Occultations This Weekend and More

Got clear skies? This week’s equinox means the return of astronomical Fall for northern hemisphere observers and a slow but steady return of longer nights afterwards. And as the Moon returns to the evening skies, all eyes turn to the astronomical action transpiring low to the southwest at dusk.

Three planets and two “occasional” planets lie along the Moon’s apparent path this coming weekend: Mars, Saturn, Mercury and the tiny worldlets of 4 Vesta and 1 Ceres. Discovered in the early 19th century, Ceres and Vesta enjoyed planetary status initially before being relegated to the realm of the asteroids, only to make a brief comeback in 2006 before once again being purged along with Pluto to dwarf planet status.

Credit: Stellarium.
The Moon approaches Saturn on the evening of September 28th as seen from latitude 30 degrees north. Credit: Stellarium.

On Sunday September 28th, the four day old Moon will actually occult (pass in front of) Saturn, Ceres, and Vesta in quick succession. The Saturn occultation is part of a series of 12 in an ongoing cycle. This particular occultation is best for Hawaiian-based observers on the evening of September 28th. Astute observers will recall that Ceres and Vesta fit in the same 15’ field of view earlier this summer. Both are now over six degrees apart and slowly widening. Unfortunately, there is no location worldwide where it’s possible to see all (or two) of these objects occulted simultaneously. The best spots for catching the occultations of +7.8 magnitude Vesta and +9.0 magnitude Ceres are from the Horn of Africa and just off of the Chilean coast of South America, respectively. The rest of us will see a close but photogenic conjunction of the trio and the Moon. To our knowledge, an occultation of Ceres or Vesta by the dark limb of the Moon has yet to be recorded. Vesta also reaches perihelion this week on September 23rd at 4:00 UT, about 2.2 astronomical units from the Sun and 2.6 A.U.s from Earth.

Credit: Andrew Symes
4 Vesta and 1 Ceres share the same field of view this past summer. Credit: Andrew Symes @FailedProtostar.

The reappearance of the Moon in the evening skies is also a great time to try your hand (or eyes) at the fine visual athletic sport of waxing crescent moon-spotting. The Moon passes New phase marking the start of lunation 1135 on Wednesday, September 24th at 6:12 UT/2:12 AM EDT. First sighting opportunities will occur over the South Pacific on the same evening, with worldwide opportunities to spy the razor-thin Moon low to the west the following night. Aim your binoculars at the Moon and sweep about three degrees to the south, and you’ll spy Mercury and the bright star Spica just over a degree apart.

This week’s New Moon is also notable for marking the celebration of Rosh Hashanah, and the beginning of the Jewish year 5775 A.M. at sundown on Wednesday. The Jewish calendar is a hybrid luni-solar one, and inserted an embolismic or intercalculary month earlier this spring to stay in sync with the solar year.

Occult 4.0
The occultation footprint of Saturn. The dashed line denotes where the event occurs in the daytime, while the solid line marks where it can be seen after sunset. Created using Occult 4.1.0.

The Moon also visits Mars and Antares on September 29th. The ruddy pair sits just three degrees apart on the 28th, making an interesting study in contrast. Which one looks “redder” to you? Antares was actually named by the Greeks to refer to it as the “equal to,” “pseudo,” or “anti-Mars…” Mars can take on anything from a yellowish to pumpkin orange appearance, depending on the current amount of dust suspended in its atmosphere. The action around Mars is also heating up, as NASA’s MAVEN spacecraft just arrived in orbit around the Red Planet and India’s Mars Orbiter is set to join it this week… and all as Comet A1 Siding Spring makes a close pass on October 19th!

And speaking of spacecraft, another news maker is photo-bombing the dusk scene, although of course it’s much too faint to see. NASA’s Dawn mission is en route to enter orbit around Ceres in early 2015, and currently lies near R.A. 15h 02’ and declination -14 37’, just over a degree from Ceres as seen from Earth. The Moon will briefly “occult” the Dawn spacecraft as well on September 28th.

Credit: Starry Night
Crowded skies: the Moon approaching Saturn, 4 Vesta, 1 Ceres and the Dawn spacecraft on the 28th. The red arrow shows the direction of the Moon. Created using Starry Night Education Software.

Be sure to keep an eye out for Earthshine on the dark limb of the Moon as our natural neighbor in space waxes from crescent to First Quarter. What you’re seeing is the reflection of sunlight from the gibbous Earth illuminating the lunar plains on the nighttime side of the Moon. This effect gives the Moon a dramatic 3D appearance and can vary depending on the amount of cloud and snow cover currently facing the Moon.

Such a close trio of conjunctions raises the question: when was the last time the Moon covered two or more planets at once? Well, on April 23rd 1998, the Moon actually occulted Venus and Jupiter at the same time, although you had to journey to Ascension Island to witness it!

Credit: Stellarium
The waning crescent Moon approaches Jupiter and Venus on April 23rd, 1998. Credit: Stellarium.

Such bizarre conjunctions are extremely rare. You need a close pairing of less than half a degree for two bright objects to be covered by the Moon at the same time. And often, such conjunctions occur too close to the Sun for observation. A great consequence of such passages, however, is that it can result in a “smiley-face” conjunction, such as the one that occurs on October 15th, 2036:

Credit: Starry Night.
Smile: A close pass of the Moon, Saturn, and Regulus in 2036. Credit: Stellarium.

Such an occurrence lends credence to a certain sense of cosmic irony in the universe.

And be sure to keep an eye on the Moon, as eclipse season 2 of 2 for 2014 kicks off next week, with the second total lunar eclipse of the year visible from North America.

More to come!