3 D Alien Snowman Graces Vesta

[/caption]

An alien ‘Snowman’ on an alien World.

The ‘Snowman’ is a string of three craters and is among the most strange and prominent features discovered on a newly unveiled world in our solar system – the giant asteroid Vesta. It reminded team members of the jolly wintertime figure – hence its name – and is a major stand out in the 3 D image above and more snapshots below.

Until a few weeks ago, we had no idea the ‘Snowman’ even existed or what the rest of Vesta’s surface actually looked like. That is until NASA’s Dawn spacecraft approached close enough and entered orbit around Vesta on July 16 and photographed the Snowman – and other fascinating Vestan landforms.

“Each observation of Vesta is producing incredible views more exciting than the last”, says Dawn’s Chief Engineer, Dr. Marc Rayman of the Jet Propulsion Laboratory. “Every image revealed new and exotic landscapes. Vesta is unlike any other place humankind’s robotic ambassadors have visited.”

‘Snowman’ craters on Vesta. What is the origin of the ‘Snowman’?
The science team is working to determine how the ‘Snowman’ formed. This set of three craters is nicknamed ‘Snowman” and is located in the northern hemisphere of Vesta. NASA’s Dawn spacecraft obtained this image with its framing camera on August 6, 2011. This image was taken through the framing camera’s clear filter aboard the spacecraft. The framing camera has a resolution of about 280 yards (260 meters). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The Snowman is located in the pockmarked northern hemisphere of Vesta – see the full frame image below. The largest of the three craters is some 70 km in diameter. Altogether the trio spans roughly 120 km in length. See Image at Left

“Craters, Craters, Craters Everywhere” – that’s one thing we can now say for sure about Vesta.

And soon we’ll known a lot more about the mineralogical composition of the craters and Vesta because spectral data is now pouring in from Dawn’s spectrometers.

After being captured by Vesta, the probe “used its ion propulsion system to spiral around Vesta, gradually descending to its present altitude of 2700 kilometers (1700 miles),” says Chief Engineer Rayman. “As of Aug.11, Dawn is in its survey orbit around Vesta.”

Dawn has now begun its official science campaign. Each orbit currently last 3 days.

Dawn’s scientific Principal Investigator, Prof. Chris Russell of UCLA, fondly calls Vesta the smallest terrestrial Planet !

I asked Russell for some insight into the Snowman and how it might have formed. He outlined a few possibilities in an exclusive interview with Universe Today.

“Since there are craters, craters, craters everywhere on Vesta it is always possible that these craters struck Vesta in a nearly straight line but many years apart,” Russell replied.

“On the other hand when we see ‘coincidences’ like this, we are suspicious that it is really not a coincidence at all but that an asteroid that was a gravitational agglomerate [sometimes called a rubble pile] struck Vesta.”

“As the loosely glued together material entered Vesta’s gravity field it broke apart with the parts moving on slightly different paths. Three big pieces landed close together and made adjacent craters.”

So, which scenario is it ?

“Our science team is trying to figure this out,” Russell told me.

“They are examining the rims of the three craters to see if the rims are equally degraded, suggesting they are of similar age. They will try to see if the ejecta blankets interacted or fell separately”

“The survey data are great but maybe we will have to wait until the high altitude mapping orbit [HAMO] to get higher resolution data on the rim degradation.”

Dawn will descend to the HAMO mapping orbit in September.

Close-up View of 'Snowman' craters.
This image of the set of three craters informally nicknamed ‘Snowman’ was taken by Dawn’s framing camera on July 24, 2011 after the probe entered Vesta’s orbit. Snowman is located in the northern hemisphere of Vesta. The image was taken from a distance of about of about 3,200 miles (5,200 kilometers). The framing camera was provided by Germany. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Russell and the Dawn team are elated with the fabulous results so far, some of which have been a total surprise.

How old is the Snowman ?

“We date the age of the surface by counting the number of craters on it as a function of size and compare with a model that predicts the number of craters as a function of size and as a function of time from the present,” Russell responded.

“However this does not tell us the age of a crater. If the crater destroyed all small craters in its bowland and left a smooth layer [melt] then the small crater counts would be reset at the impact.”

“Then you could deduce the age from the crater counts. You can also check the degradation of the rim but that is not as quantitative as the small crater counts in the larger crater. The team is doing these checks but they may have to defer the final answer until they obtain the much higher resolution HAMO data,” said Russell.

Besides images, the Dawn team is also collecting spectral data as Dawn flies overhead.

“The team is mapping the surface with VIR- the Visible and Infrared Mapping Spectrometer – and will have mineral data shortly !”, Russell told me.

At the moment there is a wealth of new science data arriving from space and new missions from NASA’s Planetary Science Division are liftoff soon. Juno just launched to Jupiter, GRAIL is heading to the launch pad and lunar orbit and the Curiosity Mars Science Laboratory (MSL) is undergoing final preflight testing for blastoff to the Red Planet.

Russell had these words of encouragement to say to his fellow space explorers;

“Dawn wishes GRAIL and MSL successful launches and hopes its sister missions join her in the exploration of our solar system very shortly.”

“This year has been and continues to be a great one for Planetary Science,” Russell concluded.

Detailed 'Snowman' Crater
Dawn obtained this image with its framing camera on August 6, 2011. This image was taken through the camera’s clear filter. The camera has a resolution of about 260 meters per pixel. This image shows a detailed view of three craters, informally nicknamed 'Snowman' by the camera’s team members. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Dawn snaps First Full-Frame Image of Asteroid Vesta – Snowman at Left
NASA's Dawn spacecraft obtained this image of the giant asteroid Vesta with its framing camera on July 24, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers). Dawn entered orbit around Vesta on July 15, and will spend a year orbiting the body. The Dawn mission to Vesta and Ceres is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The framing cameras were built by the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany, and the German Aerospace Center (DLR) Institute of Planetary Research, Berlin. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Read my prior features about Dawn
NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

NASA Unveils Thrilling First Full Frame Images of Vesta from Dawn

[/caption]

NASA has just released the first full frame images of Vesta– and they are thrilling! The new images unveil Vesta as a real world with extraordinarily varied surface details and in crispy clear high resolution for the first time in human history.

Vesta appears totally alien and completely unique. “It is one of the last major uncharted worlds in our solar system,” says Dr. Marc Rayman, Dawn’s chief engineer and mission manager at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Now that we are in orbit we can see that it’s a unique and fascinating place.”

“We have been calling Vesta the smallest terrestrial planet,” said Chris Russell, Dawn’s principal investigator at the UCLA. “The latest imagery provides much justification for our expectations. They show that a variety of processes were once at work on the surface of Vesta and provide extensive evidence for Vesta’s planetary aspirations.”

Dawn launch on September 27, 2007 by a Delta II Heavy rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

The newly published image (shown above) was taken at a distance of 3,200 miles (5,200 kilometers) by Dawn’s framing camera as the probe continues spiraling down to her initial science survey orbit of some 1,700 miles (2,700 km) altitude. The new images show the entire globe all the way since the giant asteroid turns on its axis once every five hours and 20 minutes.

Vesta and its new moon – Dawn – are approximately 114 million miles (184 million kilometers) distant away from Earth.

“The new observations of Vesta are an inspirational reminder of the wonders unveiled through ongoing exploration of our solar system,” said Jim Green, planetary division director at NASA Headquarters in Washington.

The Dark Side of Vesta Captured by Dawn
NASA's Dawn spacecraft obtained this image over the northern hemisphere with its framing camera on July 23, 2011. It was taken from a distance of about 3,200 miles (5,200 kilometers) away from the giant asteroid Vesta. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn was launched atop a Delta II Heavy booster rocket in September 2007, took a gravity assist as it flew past Mars and has been thrusting with exotic ion propulsion for about 70 percent of the time ever since.

Dawn will spend 1 year collecting science data in orbit around Vesta before heading off to the Dwarf Planet Ceres.

The science team has just completed their press briefing. Watch for my more detailed report upcoming soon.

And don’t forget JUNO launches on Aug 5 – It’s an exciting week for NASA Space Science and I’ll be reporting on the Jupiter orbiter’s blastoff and more – as Opportunity closes in on Spirit Point !

NASA’s groundbreaking interplanetary science is all inter connected – because Vesta and Ceres failed to form into full-fledged planets thanks to the disruptive influence of Jupiter.

Read my prior features about Dawn
Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Dawn Spirals Down Closer to Vesta’s South Pole Impact Basin

[/caption]

NASA’s Dawn Asteroid Orbiter is now spiraling down ever closer to the protoplanet Vesta – since arriving on July 16 – and capturing magnificent new high resolution images of the huge impact basin at the South Pole that dominates the surface. See enhanced image here.

The Dawn team just released a new image taken by the framing camera on July 18 as the orbiter flew from the day side to the night side at an altitude of 10,500 kilometers above Vesta, the second most massive body in the main Asteroid Belt between Mars and Jupiter.

NASA's Dawn spacecraft obtained this image centered on the south pole with its framing camera on July 18, 2011. It was taken from a distance of about 6,500 miles (10,500 kilometers) away from the protoplanet Vesta. The smallest detail visible is about 1.2 miles (2.0 km). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“I find this picture very dramatic !” exclaimed Dr. Marc Rayman, Dawn Chief Engineer from the NASA’s Jet Propulsion Laboratory in Pasadena, Calif., in an interview with Universe Today.

Dawn acquired this image after it had flown past the terminator and its orbit began taking it over the night side of Vesta.”

“After having this view, the spacecraft resumed gradually spiraling around its new home, heading for survey orbit where it will begin intensive observations of Vesta,” Rayman told me.

Dawn will reach the initial science survey orbit in early August, approximately 1700 miles above the battered surface. Vesta turns on its axis once very five hours and 20 minutes.

Vesta suffered an enormous cosmic collision eons ago that apparently created a gigantic impact basin in the southern hemisphere and blasted enormous quantities of soil, rocks and dust into space. Some 5% of all meteorites found on Earth originate from Vesta.

“The south pole region was declared to be a large impact basin after the Hubble Space Telescope (HST) data and images were obtained,” elaborated Prof. Chris Russell, Dawn Principal Investigator from UCLA.

“Now that we have higher resolution images we see that this region is unlike any other large impact on a small body but much of our experience here is on icy bodies of similar size,” Russell told me.

Dawn’s new images of Vesta taken at close range from just a few thousand miles away, now vastly exceed those taken by Hubble as it circled in Earth orbit hundreds of millions of miles away and may cause the science team to reevaluate some long held theories.

“The team is looking forward to obtaining higher resolution data over this region to look for confirmatory evidence for the impact hypothesis. They are not yet willing to vote for or against the HST interpretation. Needless to say the team got very excited by this image,” said Russell.

Dawn will orbit Vesta for one year before heading to its final destination, the Dwarf Planet Ceres.

Simulated View of Vesta from Dawn on July 23, 2011. Credit: NASA

Read my prior features about Dawn
First Ever Vesta Vistas from Orbit – in 2D and 3D
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

First Ever Vesta Vistas from Orbit – in 2D and 3D

[/caption]

The first ever Vesta Vista snapped from the protoplanets orbit has been transmitted back through 117 million miles of space to eager eyes waiting on Earth. Although Vesta had been observed by telescopes on Earth and in space for more than two centuries since its discovery, only scant detail on its surface could be discerned until today.

NASA’s Dawn spacecraft took the new photo of the giant asteroid Vesta on July 17 – enhanced version shown above – less than 2 days after making space history as the first probe ever to enter orbit about an object in the main Asteroid Belt. The team also released their first 3 D image of Vesta. Read my orbital capture story here and see the original NASA image below.

“I think it is truly thrilling to be turning what was little more than a fuzzy blob for two centuries into a fascinating alien world,” said Dawn Chief Engineer Marc Rayman in a new post orbit interview with Universe Today.

Vesta is 330 miles (530 kilometers) in diameter and the second most massive object in the Asteroid Belt between Mars and Jupiter.

“And the closer Dawn gets to Vesta, the more exotic and intriguing the pictures become !,” added Rayman.

First Vesta Vista Captured in orbit by Dawn on July 17, 2011
NASA's Dawn spacecraft obtained this image with its framing camera on July 17, 2011. It was taken from a distance of about 9,500 miles (15,000 kilometers) away from the protoplanet Vesta. Each pixel in the image corresponds to roughly 0.88 miles (1.4 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Enhanced image above

Dawn was captured into orbit at an altitude of 9,900 miles (16,000 km) at 1 a.m. EDT on July 16 according to Rayman, of the Jet Propulsion Lab in Pasadena, Calif. and is now slowly descending over the next few weeks.

“The spacecraft remains healthy, and our spiral down to Vesta is going well,” Rayman told me.

The new photo from orbit is nearly centered on the south pole which suffered a devastation cosmic collision eons ago. That blast sent huge plumes of ejecta streaming out, including towards Earth. About 5% of all known meteorites stem from Vesta.

“The south pole is a bulging feature in the images,” said Prof. Chris Russll, Dawn’s Science Principal Investigator of UCLA in an interview.

“The pole is not centered on this feature but is close to it. We have not finalized our determination of the pole but are close to a ‘final’ answer. We are not making interpretations at this point because the greater resolution that is coming will make all today’s speculations moot,” Russell stated.

Vesta Sizes Up
This composite image shows the comparative sizes of nine asteroids visited by Earthly spaceships. Up until now, Lutetia, with a diameter of 81 miles (130 kilometers), was the largest asteroid visited by a spacecraft, which occurred during a flyby. Vesta, which is also considered a protoplanet because it's a large body that almost became a planet, dwarfs all other small bodies in this image, with its diameter sizing up at approximately 330 miles (530 kilometers). Credit: NASA/JPL-Caltech/JAXA/ESA

By early August, Dawn will have gently been nudged into its initial science observation orbit at an altitude of approximately 1700 miles above the scarred surface of newly discovered mountains, craters, grooves, scarps and more.

During the approach phase, the Dawn team will accomplish multiple tasks with its onboard systems and three science instruments; including the search for possible moons, observing Vesta’s physical properties and obtaining calibration data.

But don’t expect a continuous stream of new pictures, according to Russell.

“We will not have a steady stream of images until we are in one of our
three science phases,” Russell told me. “When we are in transit from one place to another we thrust, stop, turn, image, turn, transmit, turn, thrust, and several days later repeat. All time spent not thrusting is time taken away from science later.”

“The next image is scheduled to be snapped on Saturday July 23.”

We will learn a lot more at the next press conference scheduled to take place on Monday August 1 from JPL.

Dawn will spend one year orbiting around Vesta and collecting high resolution mapping images, determining the chemical composition and measuring its gravity field. Then it will fire its ion thrusters to propel the probe to a second destination, the dwarf planet Ceres, arriving in February 2015.

The Asteroid Belt is one of the last unexplored regions of our solar system.

“We are beginning the study of arguably the oldest extant primordial surface in the solar system,” elaborated Russell in a NASA statement. “This region of space has been ignored for far too long. So far, the images received to date reveal a complex surface that seems to have preserved some of the earliest events in Vesta’s history, as well as logging the onslaught that Vesta has suffered in the intervening eons.”

An Enhanced View of Vesta's South Polar Region. This image, taken by the framing camera instrument aboard NASA's Dawn spacecraft, shows the south polar region of this object, which has a diameter of 330 miles (530 kilometers). The image was taken through the clear filter on July 9, 2011, as part of a rotation characterization sequence, and it has a scale of about 2.2 miles (3.5 kilometers) per pixel. To enhance details, the resolution was enlarged to 0.6 miles (1 kilometer) per pixel. This region is characterized by rough topography, a large mountain, impact craters, grooves and steep scarps. The original image was map-projected, centered at 55 degrees southern latitude and 210 degrees eastern longitude. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Anaglyph Image of Vesta's South Polar Region
This anaglyph image of the south polar region of the asteroid Vesta was put together from two clear filter images, taken on July 9, 2011 by the framing camera instrument aboard NASA's Dawn spacecraft. Each pixel in this image corresponds to roughly 2.2 miles (3.5 kilometers). The anaglyph image shows the rough topography in the south polar area, the large mountain, impact craters, grooves, and steep scarps in three dimensions. The diameter of Vesta is about 330 miles (530 kilometers). Use red-green (or red-blue) glasses to view in 3-D. NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
3 D Viewing Demo
STS-135 twins show the right and wrong way to wear nifty 3-D glasses. Remember; red on the left (Ken Kremer – at right & Mike Barrett – at left, wrong) – backdropped by Space Shuttle Atlantis at the base of Launch Pad 39A at the Kennedy Space Center. Credit: Julian Leek

Read my prior features about Dawn
Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Dawn Begins Approach to Asteroid Vesta and Snaps First Images
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Dawn Exceeds Wildest Expectations as First Ever Spacecraft to Orbit a Protoplanet – Vesta

[/caption]
NASA’s super exciting Dawn mission to the Asteroid Belt marked a major milestone in human history by becoming the first ever spacecraft from Planet Earth to achieve orbit around a Protoplanet – Vesta – on July 16. Dawn was launched in September 2007 and was 117 million miles (188 million km) distant from Earth as it was captured by Asteroid Vesta.

Dawn’s achievements thus far have already exceeded the wildest expectations of the science and engineering teams, and the adventure has only just begun ! – so say Dawn’s Science Principal Investigator Prof. Chris Russell, Chief Engineer Dr. Marc Rayman (think Scotty !) and NASA’s Planetary Science Director Jim Green in exclusive new interviews with Universe Today.

As you read these words, Dawn is steadily unveiling new Vesta vistas never before seen by a human being – and in ever higher resolution. And it’s only made possible via the revolutionary and exotic ion propulsion thrusters propelling Dawn through space (think Star Trek !). That’s what NASA, science and space exploration are all about.

Dawn is in orbit, remains in good health and is continuing to perform all of its functions,” Marc Rayman of the Jet Propulsion Laboratory, Pasadena, Calif., told me. “Indeed, that is how we know it achieved orbit. The confirmation received in a routine communications session that it has continued thrusting is all we needed.”

Image of Vesta Captured by Dawn on July 9, 2011. NASA's Dawn spacecraft obtained this image with its framing camera on July 9, 2011. It was taken from a distance of about 26,000 miles (41,000 kilometers) away from the protoplanet Vesta. Each pixel in the image corresponds to roughly 2.4 miles (3.8 kilometers). Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dawn entered orbit at about 9900 miles (16000 km) altitude after a nearly 4 year journey of 1.73 billion miles.

Over the next few weeks, the spacecrafts primary task is to gradually spiral down to its initial science operations orbit, approximately 1700 miles above the pock marked surface.

Vesta is the second most massive object in the main Asteroid Belt between Mars and Jupiter. Dawn is the first probe to orbit an object in the Asteroid Belt.

I asked Principal Investigator Chris Russell from UCLA for a status update on Dawn and to describe what the team can conclude from the images and data collected thus far.

“The Dawn team is really, really excited right now,” Russell replied.

“This is what we have been planning now for over a decade and to finally be in orbit around our first ‘protoplanet’ is fantastic.”

“The images exceed my wildest dreams. The terrain both shows the stress on the Vestan surface exerted by 4.5 billion years of collisions while preserving evidence [it seems] of what may be internal processes. The result is a complex surface that is very interesting and should be very scientifically productive.”

NASA's Dawn spacecraft, illustrated in this artist's concept, is propelled by ion engines to Protoplanets Vesta and Ceres. Credit: NASA/JPL

“The team is looking at our low resolution images and trying to make preliminary assessments but the final answers await the higher resolution data that is still to come.”

Russell praised the team and described how well the spacecraft was operating.

“The flight team has been great on this project and deserves a lot of credit for getting us to Vesta EARLY and giving us much more observation time than we had planned,” Russell told me.

“And they have kept the spacecraft healthy and the instruments safe. Now we are ready to work in earnest on our science observations.”

Dawn will remain in orbit at Vesta for one year. Then it will fire its ion thrusters and head for the Dwarf Planet Ceres – the largest object in the Asteroid Belt. Dawn will then achieve another major milestone and become the first spacecraft ever to orbit two celestial objects.

Dawn launch on September 27, 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Jim Green, Director of Planetary Science for the Science Mission Directorate (SMD) at NASA HQ in Washington, DC, summed up his feelings about Dawn in this way;

“Getting Dawn into orbit is an amazing achievement,” Green told me.

“Instead of the ‘fire the thrusters full blast’ we just sort of slid into orbit letting gravity grab the spacecraft with a light tug. This gives us great confidence that the big challenge down the road of getting into orbit around Ceres can also be accomplished just as easily.”

Sharper new images from Vesta will be published by NASA in the next day or so.

“We did take a few navigation images in this last sequence and when they get through processing they should be put on the web this week,” Russell informed. “These images are from a similar angle to the last set and with somewhat better resolution and will not reveal much new.”

However, since Dawn is now orbiting Vesta our upcoming view of the protoplanet will be quite different from what we’ve seen in the approach images thus far.

“We will be changing views in the future as the spacecraft begins to climb into its science orbit,” stated Russell.

“This may reveal new features on the surface as well as giving us better resolution. So stay tuned.”

Marc Rayman explained how and why Dawn’s trajectory is changing from equatorial to polar:

“Now that we are close enough to Vesta for its gravity to cause a significant curvature in the trajectory, our view is beginning to change,” said Rayman. “That will be evident in the pictures taken now and in the near future, as the spacecraft arcs north over the dark side and then orbits back to the south over the illuminated side.”

“The sun is over the southern hemisphere right now,” added Russell. “When we leave we are hoping to see it shine in the north.”

Dawn is an international mission with significant participation from Germany and Italy. The navigation images were taken by Dawn’s framing cameras which were built in Germany.

Exploring Vesta is like studying a fossil from the distant past that will immeasurably increase our knowledge of the beginnings of our solar system and how it evolved over time.

Dawn Infographic Poster - click to enlarge. Credit: NASA

Vesta suffered a cosmic collision at the south pole in the distant past that Dawn can now study at close range.

“For now we are viewing a fantastic asteroid, seeing it up close as we zero in on its southern hemisphere, looking at the huge central peak, and wondering how it got there,” explained Jim Green

“We know Vesta was nearly spherical at one time. Then a collision in its southern hemisphere occurred blowing off an enormous amount of material where a central peak now remains.”

That intriguing peak is now obvious in the latest Dawn images from Vesta. But what does it mean and reveal ?

“We wonder what is that peak? replied Green. “Is it part of the core exposed?

“Was it formed as a result of the impact or did it arise from volcanic action?”

“The Dawn team hopes to answer these questions. I can’t wait!” Green told me.

As a result of that ancient south pole collision, about 5% of all the meteorites found on Earth actually originate from Vesta.

Keep your eyes glued to Dawn as mysterious Vesta’s alluring secrets are unveiled.

Dawn Trajectory and Current Location in orbit at Vesta on July 18, 2011. Credit: NASA/JPL

Read my prior features about Dawn
Dawn Closing in on Asteroid Vesta as Views Exceed Hubble
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Dawn Closing in on Asteroid Vesta as Views Exceed Hubble

[/caption]

A new world in our Solar System is about to be unveiled for the first time – the mysterious protoplanet Vesta, which is the second most massive object in the main Asteroid Belt between Mars and Jupiter.

NASA’s Dawn Asteroid orbiter has entered its final approach phase to Vesta and for the first time is snapping images that finally exceed those taken several years ago by the iconic Hubble Space Telescope.

“The Dawn science campaign at Vesta will unveil a mysterious world, an object that can tell us much about the earliest formation of the planets and the solar system,” said Jim Adams, Deputy Director, Planetary Science Directorate at NASA HQ at a briefing for reporters.

Vesta holds a record of the earliest history of the solar system. The protoplanet failed to form into a full planet due to its close proximity to Jupiter.

Check out this amazing NASA approach video showing Vesta growing in Dawn’s eyes. The compilation of navigation images from Dawn’s framing camera spans about seven weeks from May 3 to June 20 was released at the NASA press briefing by the Dawn science team.

Dawn’s Approach to Vesta – Video

Best View from Hubble – Video

Be sure to notice that Vesta’s south pole is missing due to a cataclysmic event eons ago that created a massive impact crater – soon to be unveiled in astounding clarity. Some of that colossal debris sped toward Earth and survived the terror of atmospheric entry. Planetary Scientists believe that about 5% of all known meteorites originated from Vesta, based on spectral evidence.

After a journey of four years and 1.7 billion miles, NASA’s revolutionary Dawn spacecraft thrusting via exotic ion propulsion is now less than 95,000 miles distant from Vesta, shaping its path through space to match the asteroid.

The internationally funded probe should be captured into orbit on July 16 at an initial altitude of 9,900 miles when Vesta is some 117 million miles from Earth.

After adjustments to lower Dawn to an initial reconnaissance orbit of approximately 1,700 miles, the science campaign is set to kick off in August with the collection of global color images and spectral data including compositional data in different wavelengths of reflected light.

Dawn Approaching Vesta
Dawn obtained this image on June 20, 2011. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/PSI and NASA/ESA/STScI/UMd

Dawn will spend a year investigating Vesta. It will probe the protoplanet using its three onboard science instruments – provided by Germany, Italy and the US – and provide researchers with the first bird’s eye images, global maps and detailed scientific measurements to elucidate the chemical composition and internal structure of a giant asteroid.

“Navigation images from Dawn’s framing camera have given us intriguing hints of Vesta, but we’re looking forward to the heart of Vesta operations, when we begin officially collecting science data,” said Christopher Russell, Dawn principal investigator, at the University of California, Los Angeles (UCLA). “We can’t wait for Dawn to peel back the layers of time and reveal the early history of our solar system.”

Because Dawn is now so close to Vesta, the frequency of imaging will be increased to twice a week to achieve the required navigational accuracy to successfully enter orbit., according to Marc Rayman, Dawn Chief Engineer at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif.

“By the beginning of August, it will see Vesta with more than 100 times the clarity that Hubble could ever obtain,” says Rayman.

Vesta in Spectrometer View
On June 8, 2011, the visible and infrared mapping spectrometer aboard NASA's Dawn spacecraft captured the instrument's first images of Vesta that are larger than a few pixels, from a distance of about 218,000 miles (351,000 kilometers). The image was taken for calibration purposes. An image obtained in the visible part of the light spectrum appears on the left. An image obtained in the infrared spectrum, at around 3 microns in wavelength, appears on the right. The spatial resolution of this image is about 60 miles (90 kilometers) per pixel. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

Dawn will gradually edge down closer to altitudes of 420 miles and 120 miles to obtain ever higher resolution orbital images and spectal data before spiraling back out and eventually setting sail for Ceres, the largest asteroid of them all.

Dawn will be the first spacecraft to orbit two celestial bodies, only made possible via the ion propulsion system. With a wingspan of 65 feet, it’s the largest planetary mission NASA has ever launched.

“We’ve packed our year at Vesta chock-full of science observations to help us unravel the mysteries of Vesta,” said Carol Raymond, Dawn’s deputy principal investigator at JPL.

“This is an unprecedented opportunity to spend a year at a body that we know almost nothing about,” added Raymond. “We are very interested in the south pole because the impact exposed the deep interior of Vesta. We’ll be able to look at features down to tens of meters so we can decipher the geologic history of Vesta.”

Possible Piece of Vesta
Scientists believe a large number of the meteorites that are found on Earth originate from the protoplanet Vesta. A cataclysmic impact at the south pole of Vesta, the second most massive object in the main asteroid belt, created an enormous crater and excavated a great deal of debris. Some of that debris ended up as other asteroids and some of it likely ended up on Earth. Image Credit: NASA/JPL-Caltech
Dawn Trajectory and Current Location on June 29, 2011. Credt: NASA/JPL
Dawn launch on September 27, 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Read my prior feature about Dawn here

Dawn Begins Approach to Asteroid Vesta and Snaps First Images

[/caption]

NASA’s revolutionary Dawn Asteroid Orbiter has begun the final approach phase to the giant asteroid Vesta and snapped its first science image. The image was taken on May 3, when Dawn was approximately 1.21 million kilometers (752,000 miles) distant from Vesta using the science imager known as the Framing Camera.

Besides the pure delight of seeing Vesta up close for the first time, the images play a crucial role in navigating Dawn precisely through space and successfully achieve orbit around the protoplanet that nearly formed into a full fledged planet.

Vesta is the second most massive object in the Asteroid Belt and is 530 kilometers (330 miles) in diameter.

Dawn launch on September 27, 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer

Dawn should be captured into orbit about Vesta around July 16 as the engineering team works to maneuver the spacecraft to match the asteroids path around the sun using the exotic ion thrusters. Using the background stars in the framing camera images, they will be able to determine Dawn’s location in space relative to the stars in order to precisely navigate the spacecrafts trajectory towards Vesta.

“After plying the seas of space for more than a billion miles, the Dawn team finally spotted its target,” said Carol Raymond, Dawn’s deputy principal investigator at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “This first image hints of detailed portraits to come from Dawn’s upcoming visit.”

The best images of Vesta to date were taken by the Hubble Space Telescope. Jim Adams, Deputy Director of Planetary Science, told me that the images from Dawn’s Framing Camera will exceed those from Hubble in a few weeks.

Dawn will initially enter a highly elliptical polar orbit around Vesta and start collecting science data in August from an altitude of approximately 1,700 miles (2,700 kilometers). The orbit will be lowered in stages to collect high resolution data as Dawn spends about a year collecting data from its three science instruments.

Dawn's First Glimpse of Vesta -- Unprocessed
This image shows the first, unprocessed image obtained by NASA's Dawn spacecraft of the giant asteroid Vesta in front of a background of stars. It was obtained by Dawn's framing camera on May 3, 2011, from a distance of about 1.2 million kilometers (750,000 miles). Vesta is inside the white glow at the center of the image. The giant asteroid reflects so much sunlight that its size is dramatically exaggerated at this exposure. Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Thereafter Dawn will be targeted to Ceres, the largest object in the Asteroid Belt which it will reach in 2015.

Dawn is an international mission.

The framing cameras have been developed and built under the leadership of the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany, with significant contributions by the German Aerospace Center (DLR) Institute of Planetary Research, Berlin, and in coordination with the Institute of Computer and Communication Network Engineering, Braunschweig. The framing camera project is funded by the Max Planck Society, DLR, and NASA.

The Visible and Infrared mapping camera was provided by the Italian Space Agency. The Gamma Ray Detector was supplied by Los Alamos National Labotatory.

Read more about Dawn in my prior story:
Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

Dawn spacecraft under construction in cleanroom. Picture shows close up view of two science instrument; the twin Framing Cameras at top (white rectangles) and VIR Spectrometer at right. Credit: Ken Kremer

Revolutionary Dawn Closing in on Asteroid Vesta with Opened Eyes

[/caption]

The excitement is building as NASA’s innovative Dawn spacecraft closes in on its first protoplanetary target, the giant asteroid Vesta, with its camera eyes now wide open. The probe is on target to become the first spacecraft from Earth to orbit a body in the main asteroid belt and is set to arrive about four months from now in late July 2011.

Vesta is the second most massive object in the Asteroid Belt between Mars and Jupiter (map below). Since it is also one of the oldest bodies in our Solar System, scientists are eager to study it and search for clues about the formation and early history of the solar system. Dawn will spend about a year orbiting Vesta. Then it will fire its revolutionay ion thrusters and depart for Ceres, the largest asteroid in our solar system.

Dawn is equipped with three science instruments to photograph and investigate the surface mineralogy and elemental composition of the asteroid. The instruments were provided by the US, Germany and Italy. The spacecraft has just awoken from a six month hibernation phase. All three science instruments have been powered up and reactivated.

Dawn will image about 80 percent of Vesta’s surface at muliple angles with the onboard framing cameras to generate topographical maps. During the year in orbit, the probe will adjust its orbit and map the protoplanet at three different and decreasing altitudes between 650 and 200 kilometers, and thus increasing resolution. The cameras were provided and funded by Germany.

To prepare for the imaging campaign, mission planners from the US and Germany conducted a practice exercise to simulate the mission as though they were mapping Vesta. The effort was coordinated among the science and engineering teams at NASA’s Jet Propulsion Laboratory, the Institute of Planetary Research of the German Aerospace Center (DLR) in Berlin and the Planetary Science Institute in Tuscon, Ariz.

Simulated Vesta from the South Pole
This image shows the scientists' best guess to date of what the surface of the protoplanet Vesta might look like from the south pole, as projected onto a sphere 250 kilometers (160 miles) in radius. It was created as part of an exercise for NASA's Dawn mission involving mission planners at NASA's Jet Propulsion Laboratory and science team members at the Planetary Science Institute in Tuscon, Ariz. Credit: NASA/JPL-Caltech/UCLA/PSI

“We won’t know what Vesta really looks like until Dawn gets there,” said Carol Raymond in a NASA statement. Raymond is Dawn’s deputy principal investigator, based at JPL, who helped orchestrate the activity. “But we needed a way to make sure our imaging plans would give us the best results possible. The products have proven that Dawn’s mapping techniques will reveal a detailed view of this world that we’ve never seen up close before.”

Two teams worked independently and used different techniques to derive the topographical maps from the available data sets. The final results showed only minor differences in spatial resolution and height accuracy.

Using the best available observations from the Hubble Space Telescope and ground based telescopes and computer modeling techniques, they created maps of still images and a rotating animation (below) showing their best guess as to what Vesta’s surface actually looks like. The maps include dimples, bulges and craters based on the accumulated data to simulate topography and thus give a sense of Virtual Vesta in three dimensions (3 D).

“Working through this exercise, the mission planners and the scientists learned that we could improve the overall accuracy of the topographic reconstruction, using a somewhat different observation geometry,” said Nick Mastrodemo, Dawn’s optical navigation lead at JPL. “Since then, Dawn science planners have worked to tweak the plans to implement the lessons of the exercise.”

Dawn launch on September 27, 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida. Credit: Ken Kremer
Of course no one will know how close these educated guesses come to matching reality until Dawn arrives at Vesta.

The framing camera system consists of two identical cameras developed and built by the Max Planck Institute for Solar System Research, Katlenburg-Lindau, Germany and the German Aerospace Center (DLR) in Berlin.

“The camera system is working flawlessly. The dry run was a complete success,” said Andreas Nathues, lead investigator for the framing camera at the Max Planck Institute in Katlenburg-Lindau, Germany.

Since the probe came out of hibernation, the mechanical and electrical components were checked out in mid March and found to be in excellent health and the software was updated.

Dawn is a mission of many firsts.

Dawn spacecraft under construction in Cleanroom.
Picture shows close up view of two science instruments;
The twin Framing Cameras at top (white rectangles) and VIR Spectrometer at right. Credit: Ken Kremer
The spacecraft is NASA’s first mission specifically to the Asteroid Belt. It will become the first mission to orbit two solar system bodies.

The revolutionary Dawn mission is powered by exotic ion propulsion which is vastly more efficient than chemical propulsion thrusters. Indeed the ability to orbit two bodies in one mission is only enabled via the use of the ion engines fueled by xenon gas.

Vesta and Ceres are very different worlds that orbit between Mars and Jupiter. Vesta is rocky and may have undergone volcanism whereas Ceres is icy and may even harbor a subsurface ocean conducive to life.

Dawn will be able to comparatively investigate both celestial bodies with the same set of science instruments and try to unlock the mysteries of the beginnings of our solar system and why they are so different.

Dawn is part of NASA’s Discovery program and was launched in September 2007 by a Delta II rocket from Cape Canaveral Air Force Station, Florida.

Virtual Vesta in 2 D.
This image shows a model of the protoplanet Vesta, using scientists' best guess to date of what the surface of the protoplanet might look like. The images incorporate the best data on dimples and bulges of Vesta from ground-based telescopes and NASA's Hubble Space Telescope. The cratering and small-scale surface variations are computer-generated, based on the patterns seen on the Earth's moon, an inner solar system object with a surface appearance that may be similar to Vesta. Credit: NASA/JPL-Caltech/UCLA/PSI
Virtual Vesta in 3 D.
This anaglyph -- best viewed through red-blue glasses -- shows a 3-D model of the protoplanet Vesta, using scientists' best guess to date of what the surface of the protoplanet might look like. Image credit: NASA/JPL-Caltech/UCLA/PSI
Dawn Spacecraft current location approaching Asteroid Vesta on March 21, 2011