Antares Commercial Rocket Cleared for July 11 Space Station Blastoff Following Engine Re-Inspection

NASA WALLOPS FLIGHT FACILITY, VA – The long delayed liftoff of an Orbital Sciences Corp. commercial Antares rocket on a cargo mission bound for the International Space Station (ISS) has been cleared for blastoff this Friday, July 11, from the Eastern shore of Virginia, following a thorough re-inspection of the two Russian built and US modified AJ26 engines that power the rocket’s first stage after the test failure of a different engine in May.

The critically important Aerojet Rocketdyne AJ26 engine re-inspection was mandated following the significant failure of another AJ26 engine during acceptance testing on May 22 at NASA’s Stennis Space Center in Mississippi to investigate any concerns and insure against an in flight failure.

NASA and Orbital Sciences are now targeting the Antares launch carrying the privately developed Cygnus resupply freighter on the Orb-2 mission from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA’s Wallops Flight Facility, Virginia, on July 11 at 1:40 p.m. (EDT).

Universe Today was granted a visit to the Orbital Sciences Antares rocket integration facility at NASA Wallops recently as the engine re-inspection work was winding down. See my Antares/Cygnus Orb-2 rocket photos herein.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

Aerojet engineers re-inspected the engines while they were still mated to the bottom of the Antares rocket and found them to be satisfactory for fight. No swap out was required.

The Cygnus cargo logistics spacecraft was then mated to the rocket on July 3 and will be rolled out to the Wallops launch pad on Wednesday morning at 8:30 a.m., July 9.

Late stow items including time sensitive science experiments will be packed aboard on Tuesday, July 8.

The launch window on July 11 opens at 1:40 p.m. for a duration of 5 minutes.

NASA will broadcast the Antares launch live on NASA TV – http://www.nasa.gov/nasatv

In the event of a delay for any reason the next available launch opportunity is July 12 at 1:14 p.m.

Until the first stage engine failure, this Antares rocket had been slated to blastoff on June 10 with the Cygnus cargo freighter on the Orb-2 mission which is the second of eight cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

1st and 2nd stage of Orbital Sciences Antares rocket set for blast off on July 11, 2014 on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
1st and 2nd stage of Orbital Sciences Antares rocket set for blast off on July 11, 2014 on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The AJ26 rocket engine that failed in May was extensively damaged about halfway through the planned test aimed at qualifying the engine for an Antares flight scheduled for early next year.

“There was a test failure at Stennis on May 22,” Orbital Sciences spokesman Barry Beneski told Universe Today at that time. “Engineers are examining data to determine the cause of the failure.”

The failure occurred approximately 30 seconds into the planned 54-second test.

“It terminated prematurely, resulting in extensive damage to the engine,” Orbital said in a statement in May.

The pressurized Cygnus spacecraft will deliver 1,657 kg of cargo to the ISS including science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Cygnus will remain berthed at the station for 40 days.

For the return to Earth it will be loaded with approximately 1,346 kg of material for disposal upon atmospheric reentry.

The two stage Antares rocket stands 133 feet tall.

It takes about 10 minutes from launch until separation of Cygnus from the Antares vehicle.

ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS.  The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
ATK built 2nd stage integrated onto 1st stage of Orbital Sciences Antares rocket slated for July 11, 2014 launch on the Orb-2 mission from NASA’s Wallops Flight Facility in Virginia, bound for the ISS. The rocket undergoes processing at the Horizontal Integration Facility at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

Flight time to the ISS is approximately 3 days. An on time launch will result in Cygnus arrival at the ISS on July 15.

Station commander Steven Swanson of NASA and Flight Engineer Alexander Gerst of the European Space Agency (ESA) will grapple and berth Cygnus using the stations 57 foot-long robotic arm onto the Earth-facing port of the station’s Harmony module.

The Antares first stage is powered by a pair of liquid oxygen and kerosene fueled AJ26-62 engines that deliver a combined 734,000 pounds (3265 kilonewtons) of sea level thrust.

To date the AJ26 engines have performed flawlessly through a total of three Antares launches from NASA’s Wallops Flight Facility in Virginia starting in April 2013.

They measure 3.3 meters (10.9 feet) in height and weigh 1590 kg (3,500 lb.).

The AJ26 engines were originally known as the NK-33 and built during the 1960s and 1970s in the Soviet Union for their manned moon landing program.

Aerojet extensively modified, checked and tested the NK-33 engines now designated as the AJ26-62 to qualify them for use in the first stage Antares core, which is manufactured in Dnipropetrovsk, Ukraine by the Yuznoye Design Bureau and based on the Zenit launch vehicle.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flight to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The July mission marks the second operational Antares/Cygnus flight.

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS in May.

Watch for Ken’s onsite Antares Orb-2 mission reports from NASA Wallops, VA.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares ISS launch on July 11 from NASA Wallops, VA, and more about SpaceX, Boeing, commercial space, NASA’s Mars missions and more at Ken’s upcoming presentations.

July 10/11: “Antares/Cygnus ISS Launch from Virginia” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Antares Orb-2 launch viewing map for July 11, 2014 liftoff from NASA Wallops, VA. Credit: NASA
Antares Orb-2 launch viewing map for July 11, 2014 liftoff from NASA Wallops, VA. Credit: NASA

Antares Rocket Engine Suffers Significant Failure During Testing

Hotfire test of Aerojet Rocketdyne AJ26 engines on the E-1 Test Stand at NASA’s Stennis Space Center on Jan 17, 2014. Credit: NASA
See up close AJ26 photos below[/caption]

A Russian built rocket engine planned for future use in the first stage of Orbital Sciences Corp. commercial Antares rocket launching to the International Space Station failed during pre-launch acceptance testing on Thursday afternoon, May 22, at NASA’s Stennis Space Center in Mississippi.

“There was a test failure at Stennis yesterday afternoon (May 22),” Orbital Sciences spokesman Barry Beneski told Universe Today.

The Aerojet Rocketdyne AJ26 rocket engine failed with extensive damage about halfway through the planned test aimed at qualifying the engine for an Antares flight scheduled for early next year.

“Engineers are examining data to determine the cause of the failure,” Beneski told me.

The test was initiated at about 3:00 p.m. EDT on Thursday and the anomaly occurred approximately 30 seconds into the planned 54-second test.

“It terminated prematurely, resulting in extensive damage to the engine,” Orbital said in a statement.

An investigation into the incident by Aerojet and NASA has begun. The cause of the failure is not known.

“During hot-fire testing on May 22 at NASA’s Stennis Space Center, Aerojet Rocketdyne’s AJ26 engine experienced a test anomaly. The company is leading an investigation to determine the cause,” Aerojet spokesperson Jessica Pieczonka told Universe Today.

Up close view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Up close view of two AJ26 first stage engines at the base of an Antares rocket at NASA Wallops during exclusive visit by Ken Kremer/Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

Fortunately no one was hurt.

“There were no injuries,” Pieczonka confirmed to me.

A team of NASA, Orbital Sciences Corporation, Aerojet Rocketdyne and Lockheed Martin engineers tests all of the AJ26 engines on the E-1 Test Stand at NASA’s Stennis Space Center before delivering them to the launch site at NASA’s Wallops Flight Facility in Virginia.

The testing program began in November 2010.

“Stennis will perform checkouts to the facility to ensure its operational integrity,” NASA Stennis spokesperson Rebecca Strecker told me.

Antares first stage is powered by a pair of liquid oxygen and kerosene fueled AJ26-62 engines that deliver a combined 734,000 pounds (3265 kilonewtons) of sea level thrust.

To date, the AJ26 engines have performed flawlessly through a total of three Antares launches from NASA’s Wallops Flight Facility in Virginia.

They measure 3.3 meters (10.9 feet) in height and weigh 1590 kg (3,500 lb.).

Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia.  Credit: Ken Kremer - kenkremer.com
Side view of two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia. Credit: Ken Kremer – kenkremer.com

The next Antares rocket is slated to blastoff on June 10 with the Cygnus cargo freighter on the Orb-2 resupply mission to the ISS.

As of today, it’s not known whether the June flight will have to be postponed.

“It is too early to tell if upcoming Antares flights will be affected,” Beneski said.

The most recent launch of the two stage rocket took place this past winter on Jan. 9, 2014 on the Orb-1 resupply mission.

Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps.  These engines powered the successful Antares  liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences technicians at work on two AJ26 first stage engines at the base of an Antares rocket during exclusive visit by Ken Kremer/Universe Today at NASA Wallaps. These engines powered the successful Antares liftoff on Jan. 9, 2014 at NASA Wallops, Virginia bound for the ISS. Credit: Ken Kremer – kenkremer.com

The AJ26 engines were originally known as the NK-33 and built in the Soviet Union for their manned moon landing program.

Aerojet extensively modified, checked and tested the NK-33 engines now designated as the AJ26-62 to qualify them for use in the first stage Antares core, which is manufactured in Ukraine by the Yuznoye Design Bureau and based on the Zenit launch vehicle.

“Each test of an AJ26 engine is exciting and affirming because it is in direct support of NASA’s commercial space flight efforts, as well as a continuation of a very successful Stennis partnership with Orbital and Aerojet Rocketdyne,” Stennis Director Rick Gilbrech said in an earlier statement.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

The June mission would be the second operational Antares/Cygnus flight.

SpaceX has a similar resupply contract using their Falcon 9 rocket and Dragon cargo carrier and just completed their 3rd operational mission to the ISS.

Ken Kremer

Antares rocket powered by AJ26 1st stage engines successfully launched on Jan. 9, 2014. Here it undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by  Ken Kremer/Universe Today.   Credit: Ken Kremer - kenkremer.com
Antares rocket powered by AJ26 1st stage engines successfully launched on Jan. 9, 2014. Here it undergoes processing at the Horizontal Integration Facility at NASA Wallops, Virginia, during exclusive visit by Ken Kremer/Universe Today. Credit: Ken Kremer – kenkremer.com

Next SpaceX Falcon 9 Rocket Gets Landing Legs for March Blastoff to Space Station – Says Elon Musk

1st stage of SpaceX Falcon 9 rocket newly equipped with landing legs and now scheduled for launch to the International Space Station on March 16, 2014 from Cape Canaveral, FL. Credit: SpaceX/Elon Musk
Story updated[/caption]

The next commercial SpaceX Falcon 9 rocket that’s set to launch in March carrying an unmanned Dragon cargo vessel will also be equipped with a quartet of landing legs in a key test that will one day lead to cheaper, reusable boosters, announced Elon Musk, the company’s founder and CEO.

The attachment of landing legs to the first stage of SpaceX’s new and more powerful, next-generation Falcon 9 rocket counts as a major step towards the firm’s eventual goal of building a fully reusable rocket.

Before attempting the use of landing legs “SpaceX needed to gain more confidence” in the new Falcon 9 rocket, Musk told me in an earlier interview.

Blastoff of the upgraded Falcon 9 on the Dragon CRS-3 flight is currently slated for March 16 from Cape Canaveral Air Force Station, Florida on a resupply mission to bring vital supplies to the International Space Station (ISS) in low Earth orbit for NASA.

“Mounting landing legs (~60 ft span) to Falcon 9 for next month’s Space Station servicing flight,” Musk tweeted, along with the up close photos above and below.

All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for Mar 16 launch.  Credit: SpaceX/Elon Musk
All four landing legs now mounted on Falcon 9 rocket being processed inside hanger at Cape Canaveral, FL for March 16 launch. Credit: SpaceX/Elon Musk

“SpaceX believes a fully and rapidly reusable rocket is the pivotal breakthrough needed to substantially reduce the cost of space access,” according to the firm’s website.

SpaceX hopes to vastly reduce their already low $54 million launch cost when a reusable version of the Falcon 9 becomes feasible.

Although this Falcon 9 will be sprouting legs, a controlled soft landing in the Atlantic Ocean guided by SpaceX engineers is still planned for this trip.

“However, F9 will continue to land in the ocean until we prove precision control from hypersonic thru subsonic regimes,” Musk quickly added in a follow-up twitter message.

In a prior interview, I asked Elon Musk when a Falcon 9 flyback would be attempted?

“It will be on one of the upcoming missions to follow [the SES-8 launch],” Musk told me.

“What we need to do is gain more confidence on the three sigma dispersion of the mission performance of the rocket related to parameters such as thrust, specific impulse, steering loss and a whole bunch of other parameters that can impact the mission.”

“If all of those parameters combine in a negative way then you can fall short of the mission performance,” Musk explained to Universe Today.

When the upgraded Falcon 9 performed flawlessly for the SES-8 satellite launch on Dec 3, 2013 and the Thaicom-6 launch on Jan. 6, 2014, the path became clear to attempt the use of landing legs on this upcoming CRS-3 launch this March.

Atmospheric reentry engineering data was gathered during those last two Falcon 9 launches to feed into SpaceX’s future launch planning, Musk said.

That new data collected on the booster stage has now enabled the approval for landing leg utilization in this March 16 flight.

SpaceX engineers will continue to develop and refine the technology needed to accomplish a successful touchdown by the landing legs on solid ground back at the Cape in Florida.

Extensive work and testing remains before a land landing will be attempted by the company.

Ocean recovery teams will retrieve the 1st stage and haul it back to port much like the Space Shuttle’s pair of Solid Rocket Boosters.

This will be the second attempt at a water soft landing with the upgraded Falcon 9 booster.

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today on Sunday (Nov. 24) in Cocoa Beach, FL prior to planned SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite set for Nov. 25, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to December 2013 SpaceX upgraded Falcon 9 rocket blastoff with SES-8 communications satellite from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

The two stage Falcon 9 rocket and Dragon cargo carrier are currently in the final stages of processing by SpaceX technicians for the planned March 16 night time liftoff from Space Launch Complex 40 at 4:41 a.m. that will turn night into day along the Florida Space Coast.

“All four landing legs now mounted on Falcon 9,” Musk tweeted today, Feb. 25.

SpaceX has carried out extensive landing leg and free flight tests of ever increasing complexity and duration with the Grasshopper reusable pathfinding prototype.

SpaceX is under contract to NASA to deliver 20,000 kg (44,000) pounds of cargo to the ISS during a dozen Dragon cargo spacecraft flights over the next few years at a cost of about $1.6 Billion.

SpaceX Falcon 9 landing leg. Credit: SpaceX
SpaceX Falcon 9 landing leg. Credit: SpaceX

To date SpaceX has completed two cargo resupply missions. The last flight dubbed CRS-2 blasted off a year ago on March 1, 2013.

The Falcon 9 and Dragon were privately developed by SpaceX with seed money from NASA in a public-private partnership.

The goal was to restore the cargo up mass capability the US completely lost following the retirement of NASA’s space shuttle orbiters in 2011.

SpaceX along with Orbital Sciences Corp are both partnered with NASA’s Commercial Resupply Services program.

Orbital Sciences developed the competing Antares rocket and Cygnus cargo spacecraft.

This extra powerful new version of the Falcon 9 dubbed v1.1 is powered by a cluster of nine of SpaceX’s new Merlin 1D engines that are about 50% more powerful compared to the standard Merlin 1C engines. The nine Merlin 1D engines 1.3 million pounds of thrust at sea level rises to 1.5 million pounds as the rocket climbs to orbit.

The Merlin 1 D engines are arrayed in an octaweb layout for improved efficiency.

Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
Next Generation SpaceX Falcon 9 rocket blasts off with SES-8 communications satellite on Dec. 3, 2013 from Pad 40 at Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

Therefore the upgraded Falcon 9 can boost a much heavier cargo load to the ISS, low Earth orbit, geostationary orbit and beyond.

The next generation Falcon 9 is a monster. It measures 224 feet tall and is 12 feet in diameter. That compares to a 130 foot tall rocket for the original Falcon 9.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news – and upcoming launch coverage at Cape Canaveral & the Kennedy Space Center press site.

Ken Kremer

SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch by SpaceX Mission Control at Cape Canaveral Air Force Station. Florida.  Credit: Ken Kremer/kenkremer.com
SpaceX CEO Elon Musk and Ken Kremer of Universe Today discuss Falcon 9/SES-8 launch nearby SpaceX Mission Control at Cape Canaveral Air Force Station. Florida. Credit: Ken Kremer/kenkremer.com

Private Cygnus Cargo Carrier departs Space Station Complex

Following a picture perfect blastoff from NASA’s frigid Virginia spaceport and a flawless docking at the International Space Station (ISS) in mid-January, the privately built Cygnus cargo resupply vehicle has completed its five week long and initial operational station delivery mission and departed the facility early this morning, Tuesday, Feb. 18.

The Expedition 38 crewmembers Michael Hopkins of NASA and Koichi Wakata of the Japan Aerospace Exploration Agency (JAXA) demated the Orbital Sciences Cygnus commercial spacecraft from the Earth-facing port of the Harmony node using the Canadian built robotic arm at about 5:15 a.m. EST.

The cylindrically shaped ship was released from the grappling snare on the terminus of the 57 foot long extended arm at about 6:41 a.m. EST and with a slight shove as both vehicles were flying at 17500 mph and some 260 miles (415 km) altitude above Earth over the southern tip of Argentina and the South Atlantic Ocean.

The astronauts were working at a robotics work station in the windowed Cupola module facing the Earth. The arm was quickly pulled back about 5 feet (1.5 m) after triggering the release from the grappling pin.

NASA TV carried the operation live. Station and arm cameras provided spectacular video views of the distinctive grey cylindrical Cygnus back dropped by the massive, cloud covered blue Earth as it was released and sped away.

The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station's robotic arm at 6:41am EST, Feb 18. It will burn up in Earth's atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV
The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station’s robotic arm at 6:41am EST, Feb 18. It will burn up in Earth’s atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV

Cygnus was commanded to fire its jets for the departure maneuvers to quickly retreat away from the station. It was barely a speck only 5 minutes after the arm release maneuver by Wakata and Hopkins.

“The departure was nominal,” said Houston mission control. “Cygnus is on its way.”

The solar powered Cygnus is America’s newest commercial space freighter and was built by Orbital Sciences Corporation with seed money from NASA in a public-private partnership aimed at restoring the cargo up mass capabilities lost following the retirement of NASA’s space shuttles in 2011.

Cygnus, as well as the SpaceX Dragon cargo vessel, functions as an absolutely indispensable “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.

The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station's robotic arm at 6:41am EST, Feb 18. It will burn up in Earth's atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV
The Cygnus private cargo craft built by Orbital Sciences Corp. was released from the station’s robotic arm at 6:41am EST, Feb 18. It will burn up in Earth’s atmosphere on Wednesday, Feb. 19, 2014. Credit: NASA TV

The freighter delivered a treasure trove of 1.5 tons of vital research experiments, crew provisions, two dozen student science projects, belated Christmas presents, fresh fruit and more to the million pound orbiting lab complex and its six man crew.

The milestone flight dubbed Orbital 1, or Orb-1, began with the flawless Jan. 9 blast off of Cygnus mounted atop Orbital Sciences’ two stage, private Antares booster on the maiden operational launch from NASA’s Wallops Flight Facility along Virginia’s eastern shore. See a gallery of launch photos and videos – here and here.

“Today’s launch gives us the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle astronaut.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

And NASA’s commercial cargo initiative is even more important following the recent extension of station operations to at least 2024.

“I think it’s fantastic that the Administration has committed to extending the station,” Culbertson told me following the launch at NASA Wallops.

“So extending it gives not only commercial companies but also researchers the idea that Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”

Following a two day orbital chase the Cygnus spacecraft reached the station on Jan. 12.

The ship is named in honor of NASA shuttle astronaut C. Gordon Fullerton who passed away in 2013.

Science experiments weighing 1000 pounds accounted for nearly 1/3 of the cargo load.

Among those were 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The students are participants of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).

Over 20 of the students attended the launch at Wallops. The student experiments selected are from 6 middle school and high school teams from Washington, DC, Traverse, MI, Downingtown and Jamestown, PA, North Charleston, SC and Hays County, TX.

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
These are among the students benefiting from ISS extension
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

“More than half the student experiments were activated within four days of arrival,” Dr. Jeff Goldstein, Director of the NCESSE, told Universe Today exclusively.

Ant colonies from three US states were also on board to study “swarm behavior.” The “ants in space” experiment was among the first to be unloaded from Cygnus to insure they are well fed for their expedition on how they fare and adapt in zero gravity.

33 cubesats were also aboard. Several of those were deployed last week from the Japanese Experiment Module airlock.

The Orbital-1 mission was the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA to deliver 20,000 kg (44,000 pounds) of cargo through 2016.

Cygnus was berthed at the ISS for some 37 days.

After fully unpacking the 2,780 pounds (1,261 kilograms) of supplies packed inside Cygnus, the crew reloaded it with all manner of no longer need trash and have sent it off to a fiery and destructive atmospheric reentry to burn up high over the Pacific Ocean on Feb. 19.

“The cargo ship is now a trash ship,” said NASA astronaut Cady Coleman.

“Getting rid of the trash frees up a lot of valuable and much needed space on the station.”

When it reaches a sufficiently safe separation distance from the ISS, mission controllers will fire its engines two times to slow the Cygnus and begin the final deorbit sequence starting at about 8:12 a.m. on Wednesday.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12
Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

Cygnus departure is required to make way for the next private American cargo freighter – the SpaceX Dragon, which is now slated to blast off from Cape Canaveral, Florida on March 16 atop the company’s upgraded Falcon 9 booster.

Two additional Antares/Cygnus flights are slated for this year.

They are scheduled to lift off around May 1 and early October, said Culbertson.

Indeed there will be a flurry of visiting vehicles to the ISS throughout this year and beyond – creating a space traffic jam of sorts.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Orion, Chang’e-3, LADEE, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

Extend ISS to 2050 as Stepping Stone to Future Deep Space Voyages – Orbital VP/Astronaut tells Universe Today

The International Space Station could potentially function far beyond its new extension to 2024. Perhaps out to 2050. The ISS as seen from the crew of STS-119. Credit: NASA
Story updated[/caption]

WALLOPS ISLAND, VA – Just days ago, the Obama Administration approved NASA’s request to extend the lifetime of the International Space Station (ISS) to at least 2024. Ultimately this will serve as a stepping stone to exciting deep space voyages in future decades.

“I think this is a tremendous announcement for us here in the space station world,” said Bill Gerstenmaier, associate administrator for NASA’s Human Exploration and Operations Mission Directorate, at a press briefing on Jan. 8.

But there’s really “no reason to stop it there”, said Frank Culbertson, VP at Orbital Sciences and former NASA astronaut and shuttle commander, to Universe Today when I asked him for his response to NASA’s station extension announcement.

“It’s fantastic!” Culbertson told me, shortly after we witnessed the picture perfect blastoff of Orbital’s Antares/Cygnus rocket on Jan. 9 from NASA’s Wallops launch facility in Virginia, bound for the ISS.

“In my opinion, if it were up to me, we would fly it [the station] to 2050!” Culbertson added with a smile. “Of course, Congress would have to agree to that.”

Gerstenmaier emphasized that the extension will allow both the research and business communities to plan for the longer term and future utilization, be innovative and realize a much greater return on their investments in scientific research and capital outlays.

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told me at Wallops following Antares launch.

The Alpha Magnetic Spectrometer (AMS) – which is searching for elusive dark matter – was one of the key science experiments that Gerstenmaier cited as benefitting greatly from the ISS extension to 2024. The AMS is the largest research instrument on the ISS.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port on Jan. 12, 2014. Credit: NASA TV

The extension will enable NASA, the academic community and commercial industry to plan much farther in the future and consider ideas not even possible if the station was de-orbited in 2020 according to the existing timetable.

Both the Antares rocket and Cygnus cargo freighter are private space vehicles developed and built by Orbital Sciences with seed money from NASA in a public-private partnership to keep the station stocked with essential supplies and research experiments and to foster commercial spaceflight.

So I asked Culbertson and Lightfoot to elaborate on the benefits of the ISS extension to NASA, scientific researchers and commercial company’s like Orbital Sciences.

“First I think it’s fantastic that the Administration has committed to extending the station, said Culbertson. “They have to work with the ISS partners and there is a lot to be done yet. It’s a move in the right direction.”

“There is really no reason to stop operations on the space station until it is completely no longer usable. And I think it will be usable for a very long time because it is very built and very well maintained.”

“If it were up to me, we would fly it to 2050!”

“NASA and the engineers understand the station very well. I think they are operating it superbly.”

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer

“The best thing about the station is it’s now a research center. And it is really starting to ramp up. It’s not there yet. But it is now finished [the assembly] as a station and a laboratory.”

“The research capability is just starting to move in the right direction.”

The Cygnus Orbital 1 cargo vehicle launched on Jan. 9 was loaded with approximately 2,780 pounds/1,261 kilograms of cargo for the ISS crew for NASA including vital science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

The research investigations alone accounted for over 1/3 of the total cargo mass. It included a batch of 23 student designed experiments representing over 8700 students sponsored by the National Center for Earth and Space Science Education (NCESSE).

“So extending it [ISS] gives not only commercial companies but also researchers the idea that ‘Yes I can do long term research on the station because it will be there for another 10 years. And I can get some significant data.”

“I think that’s really important for them [the researchers] to understand, that it will be backed for that long time and that they won’t be cut off short in the middle of preparing an experiment or flying it.”

Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments.  Credit: Ken Kremer – kenkremer.com
Robert Lightfoot; NASA Associate Administrator, and Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, at NASA Wallops Flight Facility, VA discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff bound for the station loaded with science experiments. Credit: Ken Kremer – kenkremer.com

“So I think that first of all it demonstrates the commitment of the government to continue with NASA. But also it presents a number of opportunities for a number of people.”

What does the ISS extension mean for Orbital?

The purpose for NASA and Orbital Sciences in building Antares and Cygnus was to restore America’s ability to launch cargo to the ISS – following the shutdown of NASA’s space shuttles – by using commercial companies and their business know how to thereby significantly reduce the cost of launching cargo to low Earth orbit.

“As far as what it [the ISS extension] means for Orbital and other commercial companies – Yes, it does allow us to plan long term for what we might be able to do in providing a service for NASA in the future,” Culbertson replied.

“It also gives us the chance to be innovative and maybe invest in some improvements in how we can do this [cargo service] – to make it more cost effective, more efficient, turnaround time quicker, go more often, go a lot more often!”

“So it allows us the chance to think long term and make sure we can get a return on our investment.”

What does the ISS extension mean for NASA?

“The station is really our stepping stone,” Robert Lightfoot, NASA Associate Administrator, told Universe Today. “If you use that analogy of stepping stones and the next stone. We need to use this stone to know what the next stone looks like. So we can get ready. Whether that’s research or whether that things about the human body. You don’t want to jump off that platform before you are ready.”

“We are learning every day how to live and operate in space. Fortunately on the ISS we are close to home. So if something comes up we can get [the astronauts] home.”

The ISS extension is also the pathway to future exciting journey’s beyond Earth and into deep space, Culbertson and Lightfoot told Universe Today.

“It actually also presents a business opportunity that can be expanded not just to the station but to other uses in spaceflight, such as exploration to Asteroids, Mars and wherever we are going,” said Culbertson.

And we hope it will extend to other civilian uses in space also. Maybe other stations in space will follow this one and we’ll be able to participate in that.”

Lightfoot described the benefits for astronaut crews.

“The further out we go, the more we need to know about how to operate in space, what kind of protection we need, what kind of research we need for the astronauts,” said Lightfoot.

“Orbital is putting systems up there that allow us to test more and more. Get more time. Because when we get further away, we can’t get home as quick. So those are the kinds of things we can do.

“So with this extension I can make those investments as an Agency. And not just us, but also our academic research partners, our industry partners, and the launch market too is part of this.”

He emphasized the benefits for students, like those who flew experiments on Cygnus, and how that would inspire the next generation of explorers!

“You saw the excitement we had today with the students at the viewing area. For example with those little cubesats, 4 inches by 4 inches, that they worked on, and got launched today!”

“That’s pretty cool! And that’s exactly what we need to be doing!

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
These are among the students benefiting from ISS extension
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

“So eventually they can take our jobs. And as long as they know that station will be there for awhile, the extension gives them the chance to get the training and learning and do the research we need to take people further out in space.”

“The station is the stepping stone.”

“And it really is important to have this station extension,” Lightfoot explained to me.

The Jan. 9 launch of the Orbital-1 mission is the first of eight operational Antares/Cygnus flights to the space station scheduled through 2016 by Orbital Sciences under its $1.9 Billion Commercial Resupply Services (CRS) contract with NASA to deliver 20,000 kg of cargo to orbit.

Orbital Sciences and SpaceX – NASA’s other cargo provider – will compete for follow on ISS cargo delivery contracts.

The next Antares/Cygnus flight is slated for about May 1 from NASA Wallops.

In an upcoming story, I’ll describe Orbital Sciences’ plans to upgrade both Antares and Cygnus to meet the challenges of the ISS today and tomorrow.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital's advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff.  Credit: Ken Kremer – kenkremer.com
Frank Culbertson; executive vice president and general manager of Orbital’s advanced spaceflight programs group and former Space Shuttle commander, and Ken Kremer; Universe Today, at NASA Wallops Flight Facility, VA, discuss extension of the International Space Station lifetime following Jan. 9 Antares/Cygnus blastoff. Credit: Ken Kremer – kenkremer.com

Up Close Launch Pad Cameras capture Spectacular Sound and Fury of Antares/Cygnus Jan. 9 Blast off to Space Station – Video Gallery


Video caption: Antares ORB-1 Launch Pad Camera on south side of pad 0A being hammered from Orbital Sciences Antares rocket launch at 1:07 p.m. EST on January 9th 2014, from NASA’s Wallops Flight Facility, VA, carrying the Cygnus resupply spacecraft to the ISS. Credit: Mike Killian/Jeff Seibert/Mike Barrett/AmericaSpace.com/MikeKillianPhotography.com/Wired4Space.com

What’s it like to be standing at a rocket launch pad? Especially when it’s a private spaceship embarking on a history making flight to the space station that’s blasting the opening salvos of the new ‘commercial space era’ heard round the world?

Thrilling beyond belief!

And what’s it like to be standing at the launch pad when the engines ignite and the bird begins soaring by guzzling hundreds of thousands of pounds of burning fuel, generating intense heat and deadly earsplitting noise?

Well for a first-hand, up-close adventure to hear the deafening sound and feel the overwhelming fury, I’ve collected a gallery of videos from the Jan. 9 blastoff of the privately built Antares rocket from NASA’s Wallops Flight Facility, VA on a historic mission to the International Space Station (ISS).

The videos were created by a team of space journalists from a variety of space websites working together to create the best possible products for everyone’s enjoyment- including Alan Walters, Mike Killian, Matt Travis, Jeff Seibert, Mike Barrett and Ken Kremer representing AmericaSpace, Zero-G News, Wired4Space and Universe Today.


Video caption: Close up camera captures Antares liftoff carrying the Cygnus Orb-1 ISS resupply spacecraft. This was composed of 59 images taken by a Canon Rebel xti and 18 mm lens of the Antares Orbital 1 launch to the ISS on Jan. 9, 2013 at NASA Wallops Island, VA. Credit: Ken Kremer/Alan Walters/Matthew Travis/kenkremer.com

Wallops is located along the eastern shore of Virginia at America’s newest space port.

Because the launch pad is near the most heavily populated ares of the US, millions have a chance to view the launch along the US eastern seaboard.

And the pad sits almost directly on the Atlantic Ocean, so you can hear the waves constantly crashing on shore.

Well we always want to be as close as possible. But as you’ll see, it’s really not a very good idea to be right there.


North Side Launch Pad Camera Captures Antares Rocket Launch With Orbital Sciences Cygnus Orb-1 To ISS on Jan. 9, 2013 from NASA Wallops. A GoPro Hero 2 camera captures the launch of Orbital Sciences Antares rocket carrying the Cygnus spacecraft on the Orb-1 mission to resupply the International Space Station. Credit: Matt Travis/Mike Killian/MikeKillianPhotography.com/ZeroGnews.com/AmericaSpace.com

Virtually every camera on the south side got creamed and was blown over by the approaching fiery exhaust fury seen in the videos.

Amazingly they continued taking pictures of the exhaust as they were violently hit and flung backwards.

Luckily, as they were knocked over and fell to the ground, the lenses were still facing skyward and snapping away showing the sky and exhaust plume swirling around and eventually dissipating.

Our cameras capture the experience realistically.

We’ve set them up around the north and side sides at NASA’s Wallops Launch Pad 0A on the Mid-Atlantic Regional Spaceport (MARS).

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

How do the cameras, called remotes, collect the imagery?

They are activated either by sound triggers or timers.

It takes a lot of hard work and equipment and doesn’t always work out as planned.

But the payoff when it does is absolutely extraordinary.

The Jan. 9 blast off of Orbital Sciences’ private Antares booster delivered the firm’s Cygnus Orbital-1 cargo freighter to orbit.

Orbital Sciences' Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA
Orbital Sciences’ Cygnus cargo spacecraft, with the moon seen in the background, is moved into installation position by astronauts using a robotic arm aboard the International Space Station Jan. 12. Credit: NASA

Following a two day orbital chase and an intricate series of orbit raising maneuvers, the Cygnus vessel reached the station on Sunday, Jan. 12, and was berthed by astronauts maneuvering the robot arm at an Earth-facing port on the massive orbiting lab complex.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

SpaceX likewise has a contract with NASA to deliver cargo to the ISS via their Dragon spaceship. The next SpaceX launch is slated for Feb. 22.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12 Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the imagery featured herein. Credit: Ken Kremer – kenkremer.com

Private Cygnus Freighter Berths at Space Station with Huge Science Cargo and Ant Colony

With the Moon as a spectacular backdrop, an Orbital Sciences’ Cygnus cargo spacecraft speeding at 17500 MPH on a landmark flight and loaded with a huge treasure trove of science, belated Christmas presents and colonies of ants rendezvoued at the space station early this Sunday morning (Jan. 12), captured and then deftly parked by astronauts guiding it with the Canadian robotic arm.

Cygnus is a commercially developed resupply freighter stocked with 1.5 tons of vital research experiments, crew provisions and student science projects that serves as an indispensible “lifeline” to keep the massive orbiting outpost alive and humming with the science for which it was designed.

Following a two day orbital chase that started with the spectacular blastoff on Jan. 9 atop Orbital’s private Antares booster from NASA Wallops Flight Facility, Va., Cygnus fired its on board thrusters multiple times to approach in close proximity to the million pound International Space Station (ISS) by 3 a.m. Sunday.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

When Cygnus had moved further to within 30 feet (10 meters) NASA Astronaut and station crew member Mike Hopkins – working inside the Cupola – then successfully grappled the ship with the stations 57 foot long Canadarm2 at 6:08 a.m. EST to complete the first phase of today’s operations.

“Capture confirmed,” radioed Hopkins as the complex was flying 258 miles over the Indian Ocean and Madagascar.

“Congratulations to Orbital and the Orbital-1 team and the family of C. Gordon Fullerton,” he added. The ship is named in honor of NASA shuttle astronaut G. Gordon Fullerton who passed away in 2013.

“Capturing a free flyer is one of the most critical operations on the ISS,” explained NASA astronaut and ISS alum Cady Coleman during live NASA TV coverage.

ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV
ISS Astronauts grapple Orbital Sciences Cygnus spacecraft with robotic arm and guide it to docking port. Credit: NASA TV

Koichi Wakata of the Japan Aerospace Exploration Agency then took command of the robotic arm and maneuvered Cygnus to berth it at the Earth-facing (nadir) port on the station’s Harmony Node at 8:05 a.m while soaring over Australia.

16 bolts will be driven home and 4 latches tightly hooked to firmly join the two spacecraft together and insure no leaks.

The Orbital -1 spaceship is conducting the first of 8 operational cargo logistics flights scheduled under Orbital Sciences’ multi-year $1.9 Billion Commercial Resupply Services contract (CRS) with NASA that runs through 2016.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The purpose of the unmanned, private Cygnus spaceship – and the SpaceX Dragon – is to restore America’s cargo to orbit capability that was terminated following the shutdown of NASA’s space shuttles.

Cygnus and Dragon will each deliver 20,000 kg (44,000 pounds) of cargo to the station according to the NASA CRS contracts.

“This cargo operation is the lifeline of the station,” said Coleman.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12
Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The six person crew of Expedition 38 serving aboard the ISS is due to open the hatch to Cygnus tomorrow, Monday, and begin unloading the 2,780 pounds (1,261 kilograms) of supplies packed inside.

“Our first mission under the CRS contract with NASA was flawlessly executed by our Antares and Cygnus operations team, from the picture-perfect launch from NASA’s Wallops Flight Facility to the rendezvous, capture and berthing at the space station this morning,” said Mr. David W. Thompson, Orbital’s President and Chief Executive Officer, in a statement from Orbital.

“From the men and women involved in the design, integration and test, to those who launched the Antares and operated the Cygnus, our whole team has performed at a very high level for our NASA customer and I am very proud of their extraordinary efforts.”

Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com
Up-close view of Orbital Sciences Cygnus service module outfitted with propulsion, power generating solar arrays and guidance during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. Service module gets attached to pressurized cargo module and flies Cygnus vehicle to ISS. Credit: Ken Kremer – kenkremer.com

Science experiments weighing 1000 pounds account for nearly 1/3 of the cargo load.

Among those are 23 student designed experiments representing over 8700 K-12 students involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The students are part of the Student SpaceFlight Experiments Program (SSEP) sponsored by the National Center for Earth and Space Science Education (NCESSE).

Student Space Flight team  at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today.  23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station.  Credit: Ken Kremer - kenkremer.com
Student Space Flight team at NASA Wallops from Washington, DC discusses their microencapsulation science experiment selected to fly aboard the Cygnus spacecraft with Ken Kremer/Universe Today. 23 student experiments launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP) and have arrived at the station. Credit: Ken Kremer – kenkremer.com

Ant colonies from three US states are also aboard, living inside 8 habitats. The “ants in space” experiment will be among the first to be unloaded from Cygnus to insure the critters are well fed for their expedition on how they fare and adapt in zero gravity.

33 cubesats are also aboard that will be deployed from the Japanese Experiment Module airlock.

“One newly arrived investigation will study the decreased effectiveness of antibiotics during spaceflight. Another will examine how different fuel samples burn in microgravity, which could inform future design for spacecraft materials,” said NASA in a statement.

Cygnus is currently scheduled to remain berthed at the ISS for 37 days until February 18.

The crew will reload it with all manner of no longer need trash and then send it off to a fiery and destructive atmospheric reentry so it will burn up high over the Pacific Ocean on Feb. 19.

Cygnus departure is required to make way for the next cargo freighter – the SpaceX Dragon, slated to blast off from Cape Canaveral, Florida on Feb. 22 atop the company’s upgraded Falcon 9.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus berthed at Harmony node on ISS. Credit: NASA TV
Cygnus berthed at Harmony node on ISS. Credit: NASA TV

Cygnus Commercial Carrier Hurtling towards Space Station Rendezvous Following Spectacular Antares Blastoff – Photo & Video Gallery

Antares rocket blastoff on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA lofting the Cygnus resupply vehicle on a mission for NASA bound for the International Space Station. Docking at ISS planned for Jan. 12. Both vehicles built by Orbital Sciences. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
See Photo Gallery below
Story updated[/caption]

WALLOPS ISLAND, VA – The Cygnus commercial resupply freighter is hurtling towards the International Space Station (ISS) at 17,500 MPH following the flawless Jan. 9 blastoff from NASA Wallops Island, Va., atop the Orbital Sciences Corp. Antares rocket.

Cygnus is bound for the ISS on its historic first operational mission to deliver over 1.5 tons of science experiments, provisions and belated Christmas presents to the six man crew aboard the massive orbiting outpost, under Orbital Science’s $1.9 Billion resupply contract with NASA.

See our up close photo and video gallery of the spectacular Jan 9. Launch – above and below.

The privately built Cygnus cargo vessel is in the midst of a two and a half day high speed orbital chase and is scheduled to rendezvous and dock with the station early Sunday morning, Jan 12.

The Orbital-1 ship is named the “SS C. Gordon Fullerton” in honor of NASA space shuttle astronaut C. Gordon Fullerton who later worked at Orbital Sciences and passed away in 2013.

The imagery was shot by remote cameras set up all around the NASA Wallops Launch Pad 0A as well as from the media viewing site some 2 miles away.

Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS.  Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com
Orbital Sciences Antares rocket blasts off on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission bound for ISS. Photo taken by remote camera at launch pad. Credit: Alan Walters/AmericaSpace/awaltersphoto.com

Currently, the Cygnus spacecraft is barely 12 hours from its carefully choreographed arrival at the station on Sunday morning.

NASA TV will provide live coverage starting at 5 a.m. EST Sunday – http://www.nasa.gov/multimedia/nasatv/

Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com
Orbital Sciences’ first dedicated Cygnus mission gets underway at 1:07 p.m. EST, Thursday, 9 January, with the launch of Antares from Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) on Wallops Island, Va. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

“All Cygnus systems are performing as expected with no issues,” said Orbital Sciences in an update.

“The spacecraft has conducted five orbit-raising maneuvers and is on track for rendezvous with the International Space Station tomorrow morning [Sunday, Jan. 12].”

“Cygnus will maneuver to a distance of about 30 feet from the station,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.

The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers.   Credit: Mike Killian/mikekillianphotography.com
The third Antares rocket springs away from Pad 0A on a mission which firmly establishes Orbital Sciences Corp. as one of NASA’s Commercial Resupply Services (CRS) suppliers. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace

The goal of Orbital Sciences Cygnus – and the Space X Dragon – is to restore America’s cargo delivery capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles, by utilizing new and privately developed resupply freighters that will cuts costs.

Cygnus is packed with 2,780 pounds (1261 kg) of station supplies and vital research experiments.

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
This Cygnus is streaking to the ISS and docks on Jan. 12
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Docking mechanism to ISS at right. Credit: Ken Kremer – kenkremer.com

Expedition 38 crew members Engineers Mike Hopkins and Koichi Wakata aboard the station will reach out and with the stations 57 foot long Canadarm2 and grapple Cygnus with the robotic arm on Sunday at 6:02 a.m. EDT.

Hopkins and Wakata will then carefully maneuver the robot arm and guide Cygnus to its berthing port on the Earth-facing side of the Harmony node.

The installation begins around 7:20 a.m. EDT. And NASA TV will provide continuous live coverage of Cygnus rendezvous, docking and berthing operations.

Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com
Billowing smoke and flame in all directions, ORB-1 takes flight on Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com

The majestic blastoff of Orbital Science’s two stage Antares rocket took place from a beachside pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.

The station was flying about 260 miles over the Atlantic Ocean just off the coast of Brazil as Antares soared aloft.

Following the 10 minute ascent to orbit, Cygnus separated as planned from the ATK built upper stage about 30 minutes after launch. The Ukrainian supplied first stage fired for approximately four and one half minutes

The solar arrays deployed as planned once Cygnus was in Earth orbit to provide life giving energy required to command the spacecraft.

The picture perfect launch of the 133 foot tall Antares put on a spectacular sky show following a trio of delays since mid- December 2013.

The first postponement was forced when spacewalking astronauts were called on to conduct urgent repairs to fix an unexpected malfunction in the critical cooling system on board the station.

Then, unprecedented frigid weather caused by the ‘polar vortex’ forced a one day from Jan. 7 to Jan. 8.

Finally, an unexpected blast of solar radiation from the Earth’s Sun on Tuesday (Jan. 7) caused another 24 postponement because the highly energetic solar particles could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.

Cygnus is loaded with science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

“The crew will unload Cygnus starting probably the next day after it docks at station,” said Culbertson.

Among the research items packed aboard the Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The student experiments selected are from 6 middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.

Watch for my ongoing Antares/Cygnus reports.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments. Credit: Ken Kremer – kenkremer.com
Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer.com
Antares soars aloft on Jan. 9, 2014 from NASA Wallops.  Credit: Elliot Severn/SpaceFlight Insider
Antares soars aloft on Jan. 9, 2014 from NASA Wallops. Credit: Elliot Severn/SpaceFlight Insider
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares soars from NASA Wallops. Credit: Mike Killian/mikekillianphotography.com/AmericaSpace
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Antares rocket the night before launch beautifully reflected in icy water at NASA Wallops launch pad amidst bone chilling cold during remote camera setup for the photos featured herein. Credit: Ken Kremer – kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian  and Alan Walters  of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein.  Credit: Ken Kremer - kenkremer.com
Space journalists Ken Kremer/Universe Today (left) and Mike Killian and Alan Walters of AmericaSpace (center, right) setting remote cameras at Antares launch pad amidst bone chilling cold for the photos featured herein. Credit: Ken Kremer – kenkremer.com

NASA Antares Jan. 9, 2014 Launch Video



Video caption: U.S. Cargo Ship Launches to ISS on First Resupply Mission from NASA Wallops

Antares Private Rocket Thunders off Virginia Coast bound for Space Station – Marks 2nd US Commercial Launch This Week

Birds take flight as Antares lifts off for Space Station from Virginia Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9, 2014 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station and loaded with science experiments.
Credit: Ken Kremer – kenkremer
Story updated[/caption]

WALLOPS ISLAND, VA – A private Antares rocket thundered off a Virginia launch pad today (Jan. 9) bound for the International Space Station on a breakthrough mission that marks the second successful commercial rocket launch by an American aerospace company this week – a feat that’s sure to send shock waves reverberating around the globe as well as providing an absolutely crucial life line to the station.

The majestic blastoff of Orbital Science’s Antares rocket took place from a beach side pad at NASA’s Wallop’s Flight Facility along the eastern shore of Virginia, Thursday, at 1:07 p.m. EST.

A flock of birds flew by just as Antares soared off the pad – see my lucky shot above.

The milestone flight was conducted under Orbital’s $1.9 Billion contract to NASA as the firm’s first operational cargo delivery flight to the ISS using their own developed Cygnus resupply vehicle.

“Today’s launch gives the cargo capability to keep the station going,” said Frank Culbertson, executive vice president and general manager of Orbital’s advanced spaceflight programs group, and former Space Shuttle commander.

“Everything was right on the money.”

And with the ISS lifetime in Earth orbit now newly extended by the Obama Administration to 2024, the resupply freighters pioneered by Orbital Sciences and SpaceX – in partnership with NASA – are even more important than ever before to keep the station well stocked and humming with an ever increasing array of research projects.

Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS.  Photo taken by remote camera at launch pad. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from NASA Wallops on Virginia coast on the Orb-1 mission to the ISS. Photo taken by remote camera at launch pad. Credit: Ken Kremer – kenkremer.com

The goal was to restore America’s cargo and crew capabilities to low Earth orbit and the ISS that was totally lost following the forced retirement of NASA’s Space Shuttles.

Cygnus is packed chock full with a myriad of science experiments for dozens of new NASA science investigations as well as two dozen student science experiments from school across the country.

Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station. Credit: Ken Kremer - kenkremer.com
Blastoff of Antares commercial rocket built by Orbital Sciences on Jan. 9 from Launch Pad 0A at NASA Wallops Flight Facility, VA on a mission for NASA bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

Both the terrestrial and space weather forecasts improved dramatically in the final hours of the countdown and cooperated to allow today’s magnificent Antares launch.

The launch of the two stage, 133 foot tall Antares put on a spectacular sky show that may – because of crystal clear skies – have been visible to millions of spectators spread across the US east coast from the Carolina’s to Connecticut.

Antares beautiful liftoff on Thursday comes on the heels of Monday’s (Jan. 6) SpaceX Falcon 9 liftoff .

Furthermore, it marks a grand success for the innovative US strategy of forging low cost, reliable and effective access to space by handing the task of building the rockets and cargo vehicles to US commercial companies for routine jobs in Earth orbit while NASA focuses on investing in deep space exploration.

“Today’s launch demonstrates how our strategic investments in the American commercial spaceflight industry are helping create new jobs here at home and keep the United States the world leader in space exploration,” NASA Administrator Charles Bolden said in a NASA statement.

“American astronauts have been living and working continuously in space for the past 13 years on board the International Space Station, and we’re once again sending them supplies launched from U.S. soil.”

“In addition to the supplies, the passion and hard work of many researchers and students are being carried by Cygnus today. I congratulate Orbital and the NASA teams that made this resupply mission possible.”

Antares soars to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer - kenkremer.com
Antares soars to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer – kenkremer.com

The fourth launch attempt was finally the charm after a trio of postponements since mid- December 2013 to fix the malfunctioning cooling system on the station, unprecedented frigid weather and then an unexpected blast of solar radiation from the Sun on Tuesday (Jan. 7) that could have fried the delicate electronics controlling the rockets ascent with disastrous consequences.

Gorgeous Wallops Sunrise greets Antares rocket poised at Launch Pad 0A on Virginia shoreline.  A blast of solar radiation on Jan. 7 postponed Antares blastoff from Jan 8 to Jan 9, 2014. Credit: Mike Killian/mikekillianphotography.com
Gorgeous Wallops Sunrise greets Antares rocket poised at Launch Pad 0A on Virginia shoreline. A blast of solar radiation on Jan. 7 postponed Antares blastoff from Jan. 8 to Jan. 9, 2014. Credit: Mike Killian/mikekillianphotography.com

Both the Antares and Cygnus are private vehicles built by Orbital Sciences under a $1.9 Billion supply contract with NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware to the ISS.

Orbital Sciences commercial competitor, SpaceX, is likewise under contract with NASA to deliver 20,000 kg of supplies to the ISS with the SpaceX Falcon 9/Dragon architecture.

Antares majestic contrail soaring to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer - kenkremer.com
Antares majestic contrail as it experiences maximum dynamic pressure (MAX-Q) and flies down range over Atlantic ocean soaring to space on Jan. 9, 2014 from Virginia coast. Credit: Ken Kremer – kenkremer.com

Both the Orbital Sciences Antares/Cygnus and SpaceX Falcon 9/Dragon vehicles were developed from the start with seed money from NASA in a public-private partnership.

The flight is designated the Orbital-1, or Orb-1 mission.

A total of eight Antares/Cygnus missions to the space station are scheduled over the next two to three years by Orbital under its Commercial Resupply Services (CRS) contract with NASA.

Two additional Antares/Cygnus flight are slated for this year.

They are slated to lift off around May 1 and early October, said Culbertson.

This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.

Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

33 cubesats are also on board that will be deployed over time by the 6 person crew living aboard the ISS.

Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

The student experiments selected are from middle school and high school teams from Michigan, Texas, Colorado, and Washington, DC.

Student Space Flight teams at NASA Wallops Science experiments from these students representing six schools across  America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing six schools across America were selected to fly aboard the Cygnus spacecraft which launched to the ISS from NASA Wallops, VA, on Jan . 9, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

There is also an ant farm aboard with ant colonies from Colorado, North Carolina and of course host state Virginia too. The goal is to study ant behavior in space in zero gravity and compare that to ants on Earth living under normal gravity.

Cygnus will rendezvous with the station on Sunday, Jan 12.

Expedition 38 crew members aboard the station will grapple Cygnus with the stations robotic arm Sunday at 6:02 a.m. EDT.

NASA TV will provide live coverage of Sunday’s docking.

Antares commercial rocket built by Orbital Sciences Corp. glistens at dusk on Jan. 7 amidst bone chilling cold ahead of blastoff scheduled for Jan. 8, 2014 from NASA Wallops Island, Virginia. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket built by Orbital Sciences Corp. glistens at dusk on Jan. 7 amidst bone chilling cold ahead of blastoff on Jan. 9, 2014 from NASA Wallops Island, Virginia. Credit: Ken Kremer – kenkremer.com

Watch for my ongoing Antares launch reports from on site at NASA Wallops.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

Cygnus pressurized cargo module - side view - during prelaunch processing by Orbital Sciences at NASA Wallops, VA.  Credit: Ken Kremer - kenkremer.com
Cygnus pressurized cargo module – side view – during prelaunch processing by Orbital Sciences at NASA Wallops, VA. Cygnus is loaded with 2780 pounds of cargo and 23 student experiments. Credit: Ken Kremer – kenkremer.com

Private Antares/Cygnus rocket Glistens and Go for Launch as Polar Vortex Sweeps in Brutal Bone Chilling Cold

UPDATE: Orbital announced the Antares launch today (Jan. 8) has been scrubbed because of solar activity. More info on the issue and a new launch date will be forthcoming.

Update: NASA and Orbital have set Thursday, Jan. 9 as the new Antares launch date. Liftoff is targeted for 1:07 p.m. (EST) Watch the launch live, below.

WALLOPS ISLAND, VA – Launch managers gave the “GO” for launch of the private Antares/Cygnus rocket to the space station on Wednesday, Jan. 8, even as the polar vortex swept in bone chilling cold to the launch site on the Virginia shore and across much of the United States.

At a launch readiness review today (Jan. 7), managers for spacecraft builder Orbital Sciences approved the launch, pending completion of a few remaining items, said Mike Pinkston, Antares program director for Orbital, at a media briefing today.

The commercial Antares rocket is launching the Cygnus cargo spacecraft on its first operational mission bound for the International Space Station (ISS) with a huge bounty of science experiments.



Live streaming video by Ustream

Antares commercial rocket spacecraft awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com
Blastoff is slated for 1:32 p.m. EST from Launch Pad 0A at the Mid-Atlantic Regional Spaceport (MARS) at NASA Wallops, Virginia.

There is only a 5 minute launch window that extends to 1:37 p.m.

The launch of the two stage, 133 foot tall Antares could put on a spectacular sky show.

Antares blastoff may be visible to millions of spectators up and down the US East Coast spanning from South Carolina to Massachusetts – weather permitting.

Read my complete launch viewing guide – here.

The Antares launch comes amidst the unprecedented, unrelenting and dangerous cold arctic air mass sweeping across the US.

Frigid, high winds buffeted the rocket and launch site all day today as technicians continued last minute preparations, taking care to insure safety for the rocket and themselves.

But tonight Antares and Cygnus were glistening beautifully under star lit skies during my up close visit to the launch pad.

Antares commercial rocket awaits Jan. 8 blastoff to the ISS from on ramp at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket awaits Jan. 8 blastoff to the ISS from on ramp at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com

The launch was originally scheduled for Tuesday, but was postponed a day to Wednesday because the rocket is only certified to lift off when the temperature is above 20 degrees Fahrenheit, said Frank Culberton, executive vice president and general manager of Orbital’s advanced spaceflight programs group.

Today’s temperatures at Wallops were only in the single digits and teens and felt much lower with the blustery conditions all day long.

Temperatures are expected to ‘skyrocket’ to the balmy 30’s on Wednesday.

Antares commercial rocket awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial rocket awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com

There is a 95 percent chance of favorable weather at the time of launch, NASA said. High, thick clouds are the primary concern for a weather violation, but they are minor.

Both the Antares and Cygnus are private vehicles built by Orbital Sciences under a $1.9 Billion supply contract with NASA to deliver 20,000 kilograms of research experiments, crew provisions, spare parts and hardware to the ISS.

Antares commercial rocket spacecraft awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Antares commercial spacecraft awaits Jan. 8 blastoff at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com
The flight is designated the Orbital-1, or Orb-1 mission.

Orbital Sciences commercial competitor, SpaceX, is likewise under contract with NASA to deliver 20,000 kg of supplies to the ISS with the SpaceX Falcon 9/Dragon architecture.

Both the Orbital Sciences Antares/Cygnus and SpaceX Falcon 9/Dragon vehicles were developed from the start with seed money from NASA in a public-private partnership.

A total of eight Antares/Cygnus missions to the space station are scheduled over the next two to three years by Orbital under its Commercial Resupply Services (CRS) contract with NASA.

This launch follows a pair of successful launches in 2013, including the initial test launch in April and the 1st demonstration launch to the ISS in September.

Cygnus is loaded with approximately 2,780 pounds / 1,261 kilograms of cargo for the ISS crew for NASA including science experiments, computer supplies, spacewalk tools, food, water, clothing and experimental hardware.

Among the research items packed aboard the Antares/Cygnus flight are an experiment to study the effectiveness of antibiotics in space and a batch of 23 student experiments involving life sciences topics ranging from amoeba reproduction to calcium in the bones to salamanders.

Cygnus cargo vessel up close view at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer - kenkremer.com
Cygnus cargo vessel up close view at Launch Pad 0A at NASA Wallops Flight Facility, VA. Credit: Ken Kremer – kenkremer.com
There is also an ant farm aboard with ant colonies from Colorado, North Carolina and of course host state Virginia too. The goal is to study ant behavior in space in zero gravity and compare that to ants on Earth living under normal gravity.

So you can watch the launch either with your own eyes, if possible, or via the NASA TV webcast.

NASA Television coverage of the Antares launch will begin at 1 p.m. on Jan. 8 – www.nasa.gov/ntv

A launch on either Jan. 8 or Jan. 9 will result in a grapple of Cygnus by the Expedition 38 crew aboard the station on Sunday, Jan. 12 at 6:02 a.m. EDT.

Watch for my ongoing Antares launch reports from on site at NASA Wallops.

Stay tuned here for Ken’s continuing Orbital Sciences, SpaceX, commercial space, Chang’e-3, LADEE, Mars and more news.

Ken Kremer

…………….

Learn more about Orbital Sciences Antares Jan. 8 launch, SpaceX, Curiosity, Orion, MAVEN, MOM, Mars rovers and more at Ken’s upcoming presentations

Jan 7-9: “Antares/Cygnus ISS Rocket Launch from Virginia on Jan. 8” & “Space mission updates”; Rodeway Inn, Chincoteague, VA, evening

Just a GORGEOUS view of Antares at Wallops pad 0A this evening. Space journalists Ken Kremer /Universe Today (right) and Mike Killian (left) setting remote cameras at Antares launch pad amidst bone chilling cold.  Credit: Alan Walters/awaltersphoto.com
Just a GORGEOUS view of Antares at Wallops pad 0A this evening. Space journalists Ken Kremer /Universe Today (right) and Mike Killian (left) setting remote cameras at Antares launch pad amidst bone chilling cold. Credit: Alan Walters/awaltersphoto.com