How an Ancient Angled Impact Created Vesta’s Groovy Belt

When NASA’s Dawn spacecraft arrived at Vesta in July 2011, two features immediately jumped out at planetary scientists who had been so eagerly anticipating a good look at the giant asteroid. One was a series of long troughs encircling Vesta’s equator, and the other was the enormous crater at its southern pole. Named Rheasilvia, the centrally-peaked basin spans 500 kilometers in width and it was hypothesized that the impact event that created it was also responsible for the deep Grand Canyon-sized grooves gouging Vesta’s middle.

Now, research led by a Brown University professor and a former graduate student reveal how it all probably happened.

“Vesta got hammered,” said Peter Schultz, professor of earth, environmental, and planetary sciences at Brown and the study’s senior author. “The whole interior was reverberating, and what we see on the surface is the manifestation of what happened in the interior.”

Using a 4-meter-long air-powered cannon at NASA’s Ames Vertical Gun Range, Peter Schultz and Brown graduate Angela Stickle – now a researcher at the Johns Hopkins University Applied Physics Laboratory – recreated cosmic impact events with small pellets fired at softball-sized acrylic spheres at the type of velocities you’d find in space.

The impacts were captured on super-high-speed camera. What Stickle and Schultz saw were stress fractures occurring not only at the points of impact on the acrylic spheres but also at the point directly opposite them, and then rapidly propagating toward the midlines of the spheres… their “equators,” if you will.

Scaled up to Vesta size and composition, these levels of forces would have created precisely the types of deep troughs seen today running askew around Vesta’s midsection.

Watch a million-fps video of a test impact below:

So why is Vesta’s trough belt slanted? According to the researchers’ abstract, “experimental and numerical results reveal that the offset angle is a natural consequence of oblique impacts into a spherical target.” That is, the impactor that struck Vesta’s south pole likely came in at an angle, which made for uneven propagation of stress fracturing outward across the protoplanet (and smashed its south pole so much that scientists had initially said it was “missing!”)

Close-ups of Vesta's equatorial troughs obtained by Dawn's framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)
Close-ups of Vesta’s equatorial troughs obtained by Dawn’s framing camera in August and September 2011. (NASA/ JPL-Caltech/ UCLA/ MPS/ DLR/ IDA)

That angle of incidence — estimated to be less than 40 degrees — not only left Vesta with a slanted belt of grooves, but also probably kept it from getting blasted apart altogether.

“Vesta was lucky,” said Schultz. “If this collision had been straight on, there would have been one less large asteroid and only a family of fragments left behind.”

Watch a video tour of Vesta made from data acquired by Dawn in 2011 and 2012 below:

The team’s findings will be published in the February 2015 issue of the journal Icarus and are currently available online here (paywall, sorry). Also you can see many more images of Vesta from the Dawn mission here and find out the latest news from the ongoing mission to Ceres on the Dawn Journal.

Source: Brown University news

Making the Moon: The Practice Crater Fields of Flagstaff, Arizona

Between the years of 1969 and 1972 the astronauts of the Apollo missions personally explored the alien landscape of the lunar surface, shuffling, bounding, digging, and roving across six sites on the Moon. In order to prepare for their off-world adventures though, they needed to practice extensively here on Earth so they would be ready to execute the long laundry lists of activities they were required to accomplish during their lunar EVAs. But where on Earth could they find the type of landscape that resembles the Moon’s rugged, dusty, and — most importantly — cratered terrain?

Enter the Cinder Lakes Crater Fields of Flagstaff, Arizona.

The Cinder Lakes Crater Fields northeast of Flagstaff, near the famous San Francisco peaks and just south of the Sunset Crater volcano, were used for Apollo-era training because of the inherently lunar-like volcanic landscape. LRV practice as well as hand tool geology and lunar morphology training were performed there, as well as ALSEP – Apollo Lunar Surface Experiment Package – placement and setup practice.

The photo above shows Apollo 15 astronauts Dave Scott and Jim Irwin driving a test LRV nicknamed Grover along the rim of a small “lunar crater.” (This particular exercise was performed on Nov. 2, 1970… 44 years ago today!)

Detonation of a "lunar crater" in 1967 (USGS)
Detonation of a “lunar crater” in 1967 (USGS)

Although the craters might look similar to the ones found on the Moon, they were actually created by the USGS in 1967 by digging holes and filling them with various amounts of explosives, which were detonated to simulate different-sized lunar impact craters. The human-made craters ranged in size from 5-40 feet (1.5-12 meters) in diameter.

The two crater field sites at Cinder Lakes were chosen because of the specific surface geology: a layer of basaltic cinders covering clay beds, left over from an eruption of the Sunset Crater volcano 950 years ago. After the explosions the excavated lighter clay material spread out from the blast craters and across the fields, like ejecta from actual meteorite impacts. A total of 497 craters were made within two sites comprising 2,000 square feet.

Detonations were done in series to simulate ejected debris from cratering events of different ages. And one of the areas of Cinder Lakes was designed to specifically replicate craters found within a particular region of the Apollo 11 Mare Tranquillitatis landing site.

Watch a contemporary educational film from the USGS showing the crater field detonations here. (HT to spaceflight archivist David S. F. Portree for the link.)

The completed Cinder Lakes Crater Field #1 in October 1967 (USGS)
The completed Cinder Lakes Crater Field #1 in October 1967 (USGS)

Today only the largest craters can be distinguished at all in the publicly-accessible Cinder Lakes field, which has become popular with ATV enthusiasts. But a smaller field, fenced off to vehicles, still contains many of the original craters used by Apollo astronauts, softened by time and weather but still visible.

A couple of other areas were used as lunar analogue training fields as well, such as the nearby Merriam Crater and Black Canyon fields — the latter of which is now covered by a housing development. Geology field training exercises by Apollo astronauts were also performed at locations in Texas, New Mexico, Nevada, Oregon, Alaska, Idaho, Iceland, Mexico, the Grand Canyon, and the lava fields of Hawaii. But only in Arizona were actual craters made to specifically simulate the Moon!

Read more about the Cinder Lakes Crater Field in a presentation document (my main article source) by LPI’s Dr. David Kring, and you can find more recent photos of the Crater Lakes sites on this page by LPI’s Jim Scotti.

Top photo research: J.L. Pickering. Source: The Project Apollo Image Archive. 

Apollo 12 astronauts Pete Conrad and Alan Bean during geology training at Cinder Lakes on October 10, 1969 (NASA)
Apollo 12 astronauts Pete Conrad and Alan Bean during geology training at Cinder Lakes on October 10, 1969 (NASA)

Tonight’s Moon-Mars-Saturn Trio Recalls Time of Terror

Check it out. Look southwest at dusk tonight and you’ll see three of the solar system’s coolest personalities gathering for a late dinner. Saturn, Mars and the waxing crescent moon will sup in Libra ahead of the fiery red star Antares in Scorpius. All together, a wonderful display of out-of-this-world worlds. 

Four dark lunar seas, also called 'maria' (MAH-ree-uh), pop out in binoculars. Four featured craters are also highlighted - the triplet of Theophilus, Cyrillus and Catharina and Maurolycus, named after Francesco Maurolico, a 16th century Italian scientist. Credit: Virtual Moon Atlas / Christian LeGrande, Patrick Chevalley
Four dark lunar seas, also called ‘maria’ (MAH-ree-uh), pop out in binoculars. Four featured craters are also highlighted – the triplet of Theophilus, Cyrillus and Catharina and Maurolycus, named after Francesco Maurolico, a 16th century Italian scientist. Credit: Virtual Moon Atlas / Christian LeGrande, Patrick Chevalley

If you have binoculars, take a closer look at the thick lunar crescent. Several prominent lunar seas, visible to the naked eye as dark patches, show up more clearly and have distinctly different outlines even at minimal magnification. Each is a plain of once-molten lava that oozed from cracks in the moon’s crust after major asteroid strikes 3-3.5 billion years ago.

Larger craters also come into view at 10x including the remarkable trio of Theophilus, Cyrillus and Catharina, each of which spans about 60 miles (96 km) across. Even in 3-inch telescope, you’ll see that Theophilus partly overlaps Cyrillus, a clear indicator that the impact that excavated the crater happened after Cyrillus formed.

Close-up of our featured trio of craters. Sharpness indicates freshness. Comparing the three, the Theophilus impact clearly happened after the others. Craters gradually become eroded over time from micrometeorite impacts, solar wind bombardment, moonquakes and extreme day-to-night temperature changes. Credit: Damian Peach
Close-up of our featured trio of craters. Sharpness indicates freshness. Comparing the three, the Theophilus impact clearly happened after the others. Craters gradually become eroded over time from micrometeorite impacts, solar wind bombardment, moonquakes and extreme day-to-night temperature changes. Credit: Damian Peach

Notice that the rim Theophilus crater is still relatively crisp and fresh compared to the older, more battered outlines of its neighbors. Yet another sign of its relative youth.

Astronomers count craters on moons and planets to arrive at relative ages of their surfaces. Few craters indicate a youthful landscape, while many overlapping ones point to an ancient terrain little changed since the days when asteroids bombarded all the newly forming planets and moons. Once samples of the moon were returned from the Apollo missions and age-dated, scientists could then assign absolute ages to particular landforms. When it comes to planets like Mars, crater counts are combined with estimates of a landscape’s age along with information about the rate of impact cratering over the history of the solar system. Although we have a number of Martian meteorites with well-determined ages, we don’t know from where on Mars they originated.

At least three different impact sequences are illustrated in this photo. Maurolycus appears to lie atop an older crater, while younger, sharp-rimmed craters pock its center and southern rim. Even a 3-inch telescope will show signs of all three ages. Credit: Damian Peach
At least three different impact sequences are illustrated in this photo. Maurolycus appears to lie atop an older crater, while younger, sharp-rimmed craters pock its center and southern rim. Even a 3-inch telescope will show signs of all three ages. Credit: Damian Peach

Another crater visible in 10x binoculars tonight is Maurolycus (more-oh-LYE-kus), a great depression 71 miles (114 km) across located in the moon’s southern hemisphere in a region rich with overlapping craters. Low-angled sunlight highlighting the crater’s rim will make it pop near the moon’s terminator, the dividing line between lunar day and night.

Like Theophilus, Maurolycus overlaps a more ancient, unnamed crater best seen in a small telescope. Notice that Maurolycus is no spring chicken either; its floor bears the scares of more recent impacts.

Putting it all into context, despite their varying relative ages, most of the moon’s craters are ancient, punched out by asteroid and comet bombardment more than 3.8 billion years ago. To look at the moon is to see a fossil record of a time when the solar system was a terrifyingly untidy place. Asteroids beat down incessantly on the young planets and moons.

Despite the occasional asteroid scare and meteorite fall, we live in relative peace now. Think what early life had to endure to survive to the present. Deep inside, our DNA still connects us to the terror of that time.

What Created This Huge Crater In Siberia?

What is it with Russia and explosive events of cosmic origins? The 1908 Tunguska Explosion, the Chelyabinsk bolide of February 2013, and now this: an enormous 80-meter 60-meter wide crater discovered in the Yamal peninsula in northern Siberia!

To be fair, this crater is not currently thought to be from a meteorite impact but rather an eruption from below, possibly the result of a rapid release of gas trapped in what was once frozen permafrost. The Yamal region is rich in oil and natural gas, and the crater is located 30 km away from its largest gas field. Still, a team of researchers are en route to investigate the mysterious hole further.

Watch a video captured by engineer Konstantin Nikolaev during a helicopter flyover below:

In the video the Yamal crater/hole has what appear to be streams of dry material falling into it. Its depth has not yet been determined. (Update: latest measurements estimate the depth of the hole to be 50-70 meters. Source.)

Bill Chappell writes on NPR’s “The Two-Way”:

“The list of possible natural explanations for the giant hole includes a meteorite strike and a gas explosion, or possibly an eruption of underground ice.”

Dark material around the inner edge of the hole seems to suggest high temperatures during its formation. But rather than the remains of a violent impact by a space rock — or the crash-landing of a UFO, as some have already speculated — this crater may be a particularly explosive result of global warming.

According to The Siberian Times:

“Anna Kurchatova from Sub-Arctic Scientific Research Centre thinks the crater was formed by a water, salt and gas mixture igniting an underground explosion, the result of global warming. She postulates that gas accumulated in ice mixed with sand beneath the surface, and that this was mixed with salt – some 10,000 years ago this area was a sea.”

The crater is thought to have formed sometime in 2012.

Read more at The Siberian Times and NPR.

UPDATE July 17: A new video (in Russian) of the hole from the research team has come out, and apparently it’s been made clear that it’s not the result of a meteorite. Exactly what process did produce it is still unknown, but rising temperatures are still thought to be a factor. Watch below (via Sploid).

(If any Russian-speaking UT readers would like to translate what’s being said, feel free to share in the comments below.)

Also check out the latest photos from the research expedition at The Siberian Times here.

UPDATE Nov. 13: Once the water in these holes froze solid scientists were able to enter and explore the bottoms. According to an article published on The Guardian, “eighty percent of the crater appears to be made up of ice and there are no traces of a meteorite strike.”

Researchers descend into an ice-covered Yamal Crater in Siberia. Credit: Vladimir Pushkarev/Russian Centre of Arctic Exploration (via Siberian Times) 
Researchers descend into an ice-covered Yamal Crater in Siberia. Credit: Vladimir Pushkarev/Russian Centre of Arctic Exploration (via Siberian Times)

“As of now we don’t see anything dangerous in the sudden appearance of such holes, but we’ve got to study them properly to make absolutely sure we understand the nature of their appearance and don’t need to be afraid about them.”

– Vladimir Pushkarev, Director, Russian Center of Arctic Exploration

See more photos from inside the crater from the Russian Center of Arctic Exploration on The Siberian Times here.

German Impact Crater Could Have Hosted Early Life On Earth

Could life thrive in the devastated rock left behind after a meteorite impact? A new study hints that possibly, that could be the case. Researchers discovered what they think are geological records of biological activity inside of Nördlinger Ries, a crater in Germany that is about 15 miles (24 kilometers) wide.

What the researchers say could be microbial trace fossils — specifically, tiny “tubular features” — were spotted inside the impact glass created after the meteorite impact melted the surrounding rock. These features are tiny — one-millionth to three-millionths of a meter in diameter — and were examined with spectroscopy and scanning electron microscopy to confirm the findings, the team stated.

“The simplest and most consistent explanation of the data is that biological activity played a role in the formation of the tubular textures in the Ries glasses, likely during post-impact hydrothermal activity,” stated post-doctoral fellow Haley Sapers, a post-doctoral scholar at the University of Western Ontario who led the research.

The researchers suggest that on other planets, looking in impact glass might be a good spot to search for tubular features such as the ones they found. The findings are peer-reviewed, but we’ll be interested to see what independent research teams make of the data collected.

You can read more about the research in the journal Geology.

Source: University of Western Ontario

Plastic Protection Against Cosmic Rays?

It could work, say researchers from the University of New Hampshire and the Southwest Research Institute.

One of the inherent dangers of space travel and long-term exploration missions beyond Earth is the constant barrage of radiation, both from our own Sun and in the form of high-energy particles originating from outside the Solar System called cosmic rays. Extended exposure can result in cellular damage and increased risks of cancer at the very least, and in large doses could even result in death. If we want human astronauts to set up permanent outposts on the Moon, explore the dunes and canyons of Mars, or mine asteroids for their valuable resources, we will first need to develop adequate (and reasonably economical) protection from dangerous space radiation… or else such endeavors will be nothing more than glorified suicide missions.

While layers of rock, soil, or water could protect against cosmic rays, we haven’t yet developed the technology to hollow out asteroids for spaceships or build stone spacesuits (and sending large amounts of such heavy materials into space isn’t yet cost-effective.)  Luckily, there may be a much easier way to protect astronauts from cosmic rays — using lightweight plastics.

While aluminum has always been the primary material in spacecraft construction, it provides relatively little protection against high-energy cosmic rays and can add so much mass to spacecraft that they become cost-prohibitive to launch.

Using observations made by the Cosmic Ray Telescope for the Effects of Radiation (CRaTER) orbiting the Moon aboard LRO, researchers from UNH and SwRI have found that plastics, adequately designed, can provide better protection than aluminum or other heavier materials.

“This is the first study using observations from space to confirm what has been thought for some time—that plastics and other lightweight materials are pound-for-pound more effective for shielding against cosmic radiation than aluminum,” said Cary Zeitlin of the SwRI Earth, Oceans, and Space Department at UNH. “Shielding can’t entirely solve the radiation exposure problem in deep space, but there are clear differences in effectiveness of different materials.”

Zeitlin is lead author of a paper published online in the American Geophysical Union journal Space Weather.

A block of tissue-equivalent plastic (Credit: UNH)
A block of tissue-equivalent plastic (TEP) Credit: UNH

The plastic-aluminum comparison was made in earlier ground-based tests using beams of heavy particles to simulate cosmic rays. “The shielding effectiveness of the plastic in space is very much in line with what we discovered from the beam experiments, so we’ve gained a lot of confidence in the conclusions we drew from that work,” says Zeitlin. “Anything with high hydrogen content, including water, would work well.”

The space-based results were a product of CRaTER’s ability to accurately gauge the radiation dose of cosmic rays after passing through a material known as “tissue-equivalent plastic,” which simulates human muscle tissue.

(It may not look like human tissue, but it collects energy from cosmic particles in much the same way.)

Prior to CRaTER and recent measurements by the Radiation Assessment Detector (RAD) on the Mars rover Curiosity, the effects of thick shielding on cosmic rays had only been simulated in computer models and in particle accelerators, with little observational data from deep space.

The CRaTER observations have validated the models and the ground-based measurements, meaning that lightweight shielding materials could safely be used for long missions — provided their structural properties can be made adequate to withstand the rigors of spaceflight.

Sources: EurekAlert and [email protected]

Mercury Shows Off Its Reds, Whites, and Blues

At first glance, the planet Mercury may bear a striking resemblance to our own Moon. True, both are heavily-cratered, airless worlds that hide pockets of ice inside polar shadows… but there the similarities end. In addition to being compositionally different than the Moon, Mercury also has surface features that you won’t find on the lunar surface — or anywhere else in the Solar System.

The picture above, part of an 11-color targeted image acquired by MESSENGER on April 25, 2013, shows the varied terrain found within the 97-kilometer-wide Tyagaraja crater located near Mercury’s equator. The reds, blues, greens, and oranges, much more saturated than anything we’d see with our own eyes, correspond to surface materials of different compositions… and the brightest spots within the crater are features called “hollows” that are truly unique to Mercury, possibly resulting from the planet’s close interaction with the solar wind.

First noted in September of 2011, hollows have been identified across many areas of Mercury. One hypothesis is that they’re formed by the sublimation of subsurface material exposed inside larger craters. Being so close to the Sun and lacking a protective atmosphere, Mercury is constantly being scoured by the solar wind — a relentless stream of charged particles that’s actively “sandblasting” exposed volatiles from the planet’s surface!

Read more about hollows here.

A previous MESSENGER image of hollows inside Tyagaraja crater
A previous MESSENGER image of hollows inside Tyagaraja crater

The reddish spot at the center of the crater in the top image is likely material surrounding a pyroclastic vent, which appear red and orange in MDIS images. The dark material that appears bluish is something called “low reflectance material” (LRM).

The image was acquired as a targeted high-resolution 11-color image set. Acquiring 11-color targets is a new MESSENGER campaign that began in March and utilizes all of the Wide-Angle Camera’s 11 narrow-band color filters. Because of the large data volume involved, only features of special scientific interest are targeted for imaging in all 11 colors.

Full of geologically interesting features the crater was named for Kakarla Tyagabrahmam, an 18th century composer of classical South Indian music.

The first spacecraft to establish orbit around Mercury in summer 2011, MESSENGER is capable of continuing orbital operations until early 2015.

Read more on the Johns Hopkins University APL MESSENGER site here.

Credits:  NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This is NOT the Russian Meteorite Crater

There’s been a lot of really incredible videos and images of the meteor that streaked across Russian skies on Feb. 15, 2013… but this isn’t one of them.

I recently spotted it on YouTube, uploaded by several users and claiming to be a crater from the meteorite. Whether done purposely to deceive or just in error, the fact is that this isn’t from that event. Actually it’s not even a meteorite crater at all.

What this video shows is a feature in Derweze, Turkmenistan. It’s the remains of a 1971 drilling project by Soviet geologists. When the ground under their rig collapsed after breaking into an underground cavern full of natural gas, the geologists decided to set the borehole on fire to flare off the gases.

Panorama of The Door to Hell (Tormod Sandtorv/Wikipedia)
Panorama of The Door to Hell (Tormod Sandtorv/Wikipedia)

They assumed all the gas would soon burn off and the fire would go out. But it’s still burning today, nearly 42 years later.

The fiery glow from the circular pit has inspired the hole’s local name, “The Door to Hell.” You can find some photos of this infernal feature here.

Anyway, in the nature of not only informing but also preventing the spread of disinformation, hopefully this will help clear up any confusion for those who might run across the same video in coming days. News about the Russian meteor is still — no pun intended — very hot right now, and it’s likely that at least a few fraudulent articles might try to garner some attention.

If you want to see some real videos of the meteor, check out our original breaking news article here and see some photos of an actual resulting crater — icy, not fiery — in a frozen Russian lake here.

In order to not make for more easy hits on the incorrectly-titled video I did not set it to play. If you do still want to watch it, you can find it here.

What Craters on the Moon Teach Us About Earth

When the Moon was receiving its highest number of impacts, so was Earth. Credit: Dan Durda

Some questions about our own planet are best answered by looking someplace else entirely… in the case of impact craters and when, how and how often they were formed, that someplace can be found shining down on us nearly every night: our own companion in space, the Moon.

By studying lunar impact craters both young and old scientists can piece together the physical processes that took place during the violent moments of their creation, as well as determine how often Earth — a considerably bigger target — was experiencing similar events (and likely in much larger numbers as well.)

With no substantial atmosphere, no weather and no tectonic activity, the surface of the Moon is a veritable time capsule for events taking place in our region of the Solar System. While our constantly-evolving Earth tends to hide its past, the Moon gives up its secrets much more readily… which is why present and future lunar missions are so important to science.

linne_shade_scalebTake the crater Linné, for example. A young, pristine lunar crater, the 2.2-km-wide Linné was formed less than 10 million years ago… much longer than humans have walked the Earth, yes, but very recently on lunar geologic terms.

It was once thought that the circular Linné (as well as other craters) is bowl-shaped, thus setting a precedent for the morphology of craters on the Moon and on Earth. But laser-mapping observations by NASA’s Lunar Reconnaissance Orbiter (at right) determined in early 2012 that that’s not the case; Linné is actually more of a truncated inverted cone, with a flattened interior floor surrounded by sloping walls that rise up over half a kilometer to its rim.

On our planet the erosive processes of wind, water, and earth soon distort the shapes of craters like Linné, wearing them down, filling them in and eventually hiding them from plain sight completely. But in the Moon’s airless environment where the only weathering comes from more impacts they retain their shape for much longer lengths of time, looking brand-new for many millions of years. By studying young craters in greater detail scientists are now able to better figure out just what happens when large objects strike the surface of worlds — events that can and do occur quite regularly in the Solar System, and which may have even allowed life to gain a foothold on Earth.

Most of the craters visible on the Moon today — Linné excluded, of course — are thought to have formed within a narrow period of time between 3.8 and 3.9 billion years ago. This period, called the Late Heavy Bombardment, saw a high rate of impact events throughout the inner Solar System, not only on the Moon but also on Mars, Mercury, presumably Venus and Earth as well. In fact, since at 4 times its diameter the Earth is a much larger target than the Moon, it stands to reason that Earth was impacted many more times than the Moon as well. Such large amounts of impacts introduced material from the outer Solar System to the early Earth as well as melted areas of the surface, releasing compounds like water that had been locked up in the crust… and even creating the sorts of environments where life could have begun to develop and thrive.

(It’s been suggested that there was even a longer period of heavy impact rates nicknamed the “late late heavy bombardment” that lingered up until about 2.5 billion years ago. Read more here.)

In the video below lunar geologist David Kring discusses the importance of impacts on the evolution of the Moon, Earth and eventually life as we know it today:

“Impact cratering in Earth’s past has affected not only the geologic but the biologic evolution of our planet, and we were able to deduce that in part by the lessons we learned by studying the Moon… and you just have to wonder what other things we can learn by going back to the Moon and studying that planetary body further.”

– David Kring

David is a senior staff scientist at the Lunar and Planetary Institute in Houston, TX.

It’s these sorts of connections that make lunar exploration so valuable. Keys to our planet’s past are literally sitting on the surface of the Moon, a mere 385,000 km away, waiting for us to just scoop them up and bring them back. While the hunt for a biological history on Mars or resource-mining an asteroid are definitely important goals in their own right, only the Moon holds such direct references to Earth. It’s like an orbiting index to the ongoing story of our planet — all we have to do is make the connections.

 

Learn more about lunar research at the LPI site here, and see the latest news and images from LRO here.

The South Rim of Aristarchus

LROC view looking obliquely of the south rim of Aristarchus from the west (NASA/GSFC/Arizona State University)

Flying over at an altitude of 135 km, NASA’s Lunar Reconnaissance Orbiter captured this lovely oblique view of the crater Aristarchus, looking down at the 40-km (25-mile) -wide crater’s southern rim from the west.

The broad flank of Aristarchus’ 300-meter (980-foot) central peak and surrounding hills can be seen at left, casting lengthening shadows in the setting sun.

Named after the Greek astronomer who first proposed a controversial heliocentric model for the Solar System in the 3rd century BCE, Aristarchus is a prominent crater located near the Moon’s northwestern limb within the geologically-diverse Oceanus Procellarum — the “Ocean of Storms.” Surrounded by rays of bright ejecta that extend down its stepped rim, the floor of Aristarchus drops 3.7 km (2.3 miles) below the surrounding lunar landscape.

Read more: LRO Lets You Stand on the Rim of Aristarchus Crater

The bright material seen in the ejecta streaks seems to echo the patterns of light and dark material lining the slopes of Aristarchus’ central peak, suggesting that they may be the made of similar material.

arist_cpeak_halfres

Detail of the 4.5-km-long central peak of Aristarchus (NASA/GSFC/Arizona State University)

The impact that created Aristarchus an estimated 450 million years ago excavated subsurface material, melting and spraying it tens of kilometers over the surrounding plateau. It’s thought that the central peak is likely composed of the same stuff, dredged up by the impact and frozen in place.

Future lunar explorers, should they ever visit this region, would be able to collect samples from the base of the central peak and compare them to samples from the bright rays to see if they match up, allowing researchers to learn about the composition of the material underlying the plateau from rocks scattered conveniently around the surface… this is the beauty of such (relatively) recent craters! The digging’s already been done for us.

Read more about this on Arizona State University’s LROC site and explore a zoomable version of the original NAC frame here.