When Was the First Light in the Universe?

When Was the First Light in the Universe?


The speed of light gives us an amazing tool for studying the Universe. Because light only travels a mere 300,000 kilometers per second, when we see distant objects, we’re looking back in time.

You’re not seeing the Sun as it is today, you’re seeing an 8 minute old Sun. You’re seeing 642 year-old Betelgeuse. 2.5 million year-old Andromeda. In fact, you can keep doing this, looking further out, and deeper into time. Since the Universe is expanding today, it was closer in the past.

Run the Universe clock backwards, right to the beginning, and you get to a place that was hotter and denser than it is today.  So dense that the entire Universe shortly after the Big Bang was just a soup of protons, neutrons and electrons, with nothing holding them together.

Illustration of the Big Bang Theory
The Big Bang Theory: A history of the Universe starting from a singularity and expanding ever since. Credit: grandunificationtheory.com

In fact, once it expanded and cooled down a bit, the entire Universe was merely as hot and as dense as the core of a star like our Sun. It was cool enough for ionized atoms of hydrogen to form.

Because the Universe has the conditions of the core of a star, it had the temperature and pressure to actually fuse hydrogen into helium and other heavier elements. Based on the ratio of those elements we see in the Universe today: 74% hydrogen, 25% helium and 1% miscellaneous, we know how long the Universe was in this “whole Universe is a star” condition.

It lasted about 17 minutes. From 3 minutes after the Big Bang until about 20 minutes after the Big Bang.  In those few, short moments, clowns gathered all the helium they would ever need to haunt us with a lifetime of balloon animals.

The fusion process generates photons of gamma radiation. In the core of our Sun, these photons bounce from atom to atom, eventually making their way out of the core, through the Sun’s radiative zone, and eventually out into space. This process can take tens of thousands of years. But in the early Universe, there was nowhere for these primordial photons of gamma radiation to go. Everywhere was more hot, dense Universe.

The Universe was continuing to expand, and finally, just a few hundred thousand years after the Big Bang, the Universe was finally cool enough for these atoms of hydrogen and helium to attract free electrons, turning them into neutral atoms.

Artist's impression of how huge cosmic structures deflect photons in the cosmic microwave background (CMB). Credit: ESA and the Planck Collaboration
Artist’s impression of how huge cosmic structures deflect photons in the cosmic microwave background (CMB). Credit: ESA and the Planck Collaboration

This was the moment of first light in the Universe, between 240,000 and 300,000 years after the Big Bang, known as the Era of Recombination. The first time that photons could rest for a second, attached as electrons to atoms. It was at this point that the Universe went from being totally opaque, to transparent.

And this is the earliest possible light that astronomers can see. Go ahead, say it with me: the Cosmic Microwave Background Radiation. Because the Universe has been expanding over the 13.8 billion years from then until now, the those earliest photons were stretched out, or red-shifted, from ultraviolet and visible light into the microwave end of the spectrum.

If you could see the Universe with microwave eyes, you’d see that first blast of radiation in all directions. The Universe celebrating its existence.

After that first blast of light, everything was dark, there were no stars or galaxies, just enormous amounts of these primordial elements. At the beginning of these dark ages, the temperature of the entire Universe was about 4000 kelvin. Compare that with the 2.7 kelvin we see today. By the end of the dark ages, 150 million years later, the temperature was a more reasonable 60 kelvin.

Artist's concept of the first stars in the Universe turning on some 200 million years after the Big Bang. These first suns were made of almost pure hydrogen and helium. They and later generations of stars cooked up the heavier elements from these simple ones. Credit: NASA/WMAP Science Team
Artist’s concept of the first stars in the Universe turning on some 200 million years after the Big Bang. These first suns were made of almost pure hydrogen and helium. They and later generations of stars cooked up the heavier elements from these simple ones. Credit: NASA/WMAP Science Team

For the next 850 million years or so, these elements came together into monster stars of pure hydrogen and helium. Without heavier elements, they were free to form stars with dozens or even hundreds of times the mass of our own Sun. These are the Population III stars, or the first stars, and we don’t have telescopes powerful enough to see them yet. Astronomers indirectly estimate that those first stars formed about 560 million years after the Big Bang.

Then, those first stars exploded as supernovae, more massive stars formed and they detonated as well. It’s seriously difficult to imagine what that time must have looked like, with stars going off like fireworks. But we know it was so common and so violent that it lit up the whole Universe in an era called reionization. Most of the Universe was hot plasma.

Scientists have used ESO’s Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history — known as reionisation — occurred around 13 billion years ago. By carefully studying some of the most distant galaxies ever detected, the team has been able to establish a timeline for reionisation for the first time. They have also demonstrated that this phase must have happened quicker than astronomers previously thought.
Scientists have used ESO’s Very Large Telescope to probe the early Universe at several different times as it was becoming transparent to ultraviolet light. This brief but dramatic phase in cosmic history — known as reionisation — occurred around 13 billion years ago.

The early Universe was hot and awful, and there weren’t a lot of the heavier elements that life as we know it depends on. Just think about it. You can’t get oxygen without fusion in a star, even multiple generations. Our own Solar System is the result of several generations of supernovae that exploded, seeding our region with heavier and heavier elements.

As I mentioned earlier in the article, the Universe cooled from 4000 kelvin down to 60 kelvin. About 10 million years after the Big Bang, the temperature of the Universe was 100 C, the boiling point of water. And then 7 million years later, it was down to 0 C, the freezing point of water.

This has led astronomers to theorize that for about 7 million years, liquid water was present across the Universe… everywhere. And wherever we find liquid water on Earth, we find life.

An artists illustration of the early Universe. Image Credit: NASA
An artists illustration of the early Universe. Image Credit: NASA

So it’s possible, possible that primitive life could have formed with the Universe was just 10 million years old. The physicist Avi Loeb calls this the habitable Epoch of the Universe. No evidence, but it’s a pretty cool idea to think about.

I always find it absolutely mind bending to think that all around us in every direction is the first light from the Universe. It’s taken 13.8 billion years to reach us, and although we need microwave eyes to actually see it, it’s there, everywhere.

How Many Galaxies Are There in the Universe?

How Many Galaxies Are There in the Universe?


The wonderful thing about science is that it’s constantly searching for new evidence, revising estimates, throwing out theories, and sometimes discovering aspects of the Universe that we never realized existed.

The best science is skeptical of itself, always examining its own theories to find out where they could be wrong, and seriously considering new ideas to see if they better explain the observations and data.

What this means is that whenever I state some conclusion that science has reached, you can’t come back a few years later and throw that answer in my face. Science changes, it’s not my fault.

I get it, VY Canis Majoris isn’t the biggest star any more, it’s whatever the biggest star is right now. UY Scuti? That what it is today, but I’m sure it’ll be a totally different star when you watch this in a few years.

What I’m saying is, the science changes, numbers update, and we don’t need to get concerned when it happens. Change is a good thing. And so, it’s with no big surprise that I need to update the estimate for the number of galaxies in the observable Universe. Until a couple of weeks ago, the established count for galaxies was about 200 billion galaxies.

Jacinta studies distant galaxies like those shown in this image from the Hubble Space Telescope, using the new 'stacking' technique to gather information only available through radio telescope observations. Credit: NASA, STScI, and ESA.
Jacinta studies distant galaxies like those shown in this image from the Hubble Space Telescope, using the new ‘stacking’ technique to gather information only available through radio telescope observations. Credit: NASA, STScI, and ESA.

But a new paper published in the Astrophysics Journal revised the estimate for the number of galaxies, by a factor of 10, from 200 billion to 2 trillion. 200 billion, I could wrap my head around, I say billion all the time. But 2 trillion? That’s just an incomprehensible number.

Does that throw all the previous estimates for the number of stars up as well? Actually, it doesn’t.

The observable Universe measures 13.8 billion light-years in all directions. What this means is that at the very edge of what we can see, is the light left that region 13.8 billion years ago. Furthermore, the expansion of the Universe has carried to those regions 46 billion light-years away.

Does that make sense? The light you’re seeing is 13.8 billion light-years old, but now it’s 46 billion light-years away. What this means is that the expansion of space has stretched out the light from all the photons trying to reach us.

What might have been visible or ultraviolet radiation in the past, has shifted into infrared, and even microwaves at the very edge of the observable Universe.

Since astronomers know the volume of the observable Universe, and they can calculate the density of the Universe, they know the mass of the entire Universe. 3.4 x 10^54 kilograms including regular matter and dark matter.  They also know the ratio of regular matter to dark matter, so they can calculate the total amount of regular mass in the Universe.

In the past, astronomers divided that total mass by the number of galaxies they could see in the original Hubble data and determined there were about 200 billion galaxies.

Now, astronomers used a new technique to estimate the galaxies and it’s pretty cool. Astronomers used the Hubble Space Telescope to peer into a seemingly empty part of the sky and identified all the galaxies in it. This is the Hubble Ultra Deep Field, and it’s one of the most amazing pictures Hubble has ever captured.

The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)
The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

Astronomers painstakingly converted this image of galaxies into a 3-dimensional map of galaxy size and locations. Then, they used their knowledge of galaxy structure closer to home to provide a more accurate estimate of what the galaxies must look like, out there, at the very edge of our observational ability.

For example, the Milky Way is surrounded by about 50 satellite dwarf galaxies, each of which has a fraction of the mass of the Milky Way.

By recognizing which were the larger main galaxies, they could calculate the distribution of smaller, dimmer dwarf galaxies that weren’t visible in the Hubble images.

In other words, if the distant Universe is similar to the nearby Universe, and this is one of the principles of modern astronomy, then the distant galaxies have the same structure as nearby galaxies.

It doesn’t mean that the Universe is bigger than we thought, or that there are more stars, it just means that the Universe contains more galaxies, which have less stars in them. There are the big main galaxies, and then a smooth distribution curve of smaller and smaller galaxies down to the tiny dwarf galaxies. The total number of stars comes out to be the same number.

The Fornax dwarf galaxy is one of our Milky Way’s neighbouring dwarf galaxies. The Milky Way is, like all large galaxies, thought to have formed from smaller galaxies in the early days of the Universe. These small galaxies should also contain many very old stars, just as the Milky Way does, and a team of astronomers has now shown that this is indeed the case. This image was composed from data from the Digitized Sky Survey 2. Credit: ESO
The Fornax dwarf galaxy is one of our Milky Way’s neighbouring dwarf galaxies. Credit: ESO

The galaxies we can see are just the tip of the galactic iceberg. For every galaxy we can see, there are another 9, smaller fainter galaxies that we can’t see.

Of course, we’re just a few years away from being able to see these dimmer galaxies. When NASA’s James Webb Space Telescope launches in October, 2018, it’s going to be carrying a telescope mirror with 25 square meters of collecting surface, compared to Hubble’s 4.5 square meters.

Furthermore, James Webb is an infrared telescope, a specialized tool for looking at cooler objects, and galaxies which are billions of light-years away. The kinds of galaxies that Hubble can only hint at, James Webb will be able to see directly.

So, why don’t we see galaxies in all directions with our eyeballs?  This is actually an old conundrum, proposed by Wilhelm Olbers in the 1700, appropriately named Olber’s Paradox.  We did a whole article on it, but the basic idea is that if you look in any direction, you’ll eventually hit a star. It could be close, like the Sun, or very far away, but whatever the case, it should be stars in all directions. Which means that the entire night sky should be as bright as the surface of a star. Clearly it isn’t, but why isn’t it?

In fact, with 10 times the number of galaxies, you could restate the paradox and say that in every direction, you should be looking at a galaxy, but that’s not what you see.

A partial map of the distribution of galaxies in the SDSS, going out to a distance of 7 billion light years. The amount of galaxy clustering that we observe today is a signature of how gravity acted over cosmic time, and allows as to test whether general relativity holds over these scales. (M. Blanton, SDSS)
A partial map of the distribution of galaxies in the SDSS, going out to a distance of 7 billion light years. The amount of galaxy clustering that we observe today is a signature of how gravity acted over cosmic time, and allows as to test whether general relativity holds over these scales. (M. Blanton, SDSS)

Except you are. Everywhere you look, in all directions, you’re seeing galaxies. It’s just that those galaxies are red-shifted from the visible spectrum into the infrared spectrum, so your eyeballs can’t perceive them. But they’re there.

When you see the sky in microwaves, it does indeed glow in all directions. That’s the Cosmic Microwave Background Radiation, shining behind all those galaxies.

It turns out the Universe has 10 times more galaxies than previously estimated – 2 trillion galaxies. Not 10 times the stars or mass, those numbers have stayed the same.

And, once James Webb launches, those numbers will be fine-tuned again to be even more precise. 1.5 trillion? 3.4 trillion? Stay tuned for the better number.

How Are Galaxies Moving Away Faster Than Light?

So, how can galaxies be traveling faster than the speed of light when nothing can travel faster than light?

I’m a little world of contradictions. “Not even light itself can escape a black hole”, and then, “black holes and they are the brightest objects in the Universe”. I’ve also said “nothing can travel faster than the speed of light”. And then I’ll say something like, “ galaxies are moving away from us faster than the speed of light.” There’s more than a few items on this list, and it’s confusing at best. Thanks Universe!

So, how can galaxies be traveling faster than the speed of light when nothing can travel faster than light? Warp speed galaxies come up when I talk about the expansion of the Universe. Perhaps it’s dark energy acceleration, or the earliest inflationary period of the Universe when EVERYTHING expanded faster than the speed of light.

Imagine our expanding Universe. It’s not an explosion from a specific place, with galaxies hurtling out like cosmic jetsam. It’s an expansion of space. There’s no center, and the Universe isn’t expanding into anything.

I’d suggested that this is a terribly oversimplified model for our Universe expanding. Unfortunately, it’s also terribly convenient. I can steal it from my children whenever I want.

Imagine you’re this node here, and as the toy expands, you see all these other nodes moving away from you. And if you were to move to any other node, you’d see all the other nodes moving away from you.

Here’s the interesting part, these nodes over here, twice as far away as the closer ones, appear to move more quickly away from you. The further out the node is, the faster it appears to be moving away from you.

This is our freaky friend, the Hubble Constant, the idea that for every megaparsec of distance between us and a distant galaxy, the speed separating them increases by about 71 kilometers per second.

Galaxies separated by 2 parsecs will increase their speed by 142 kilometers every second. If you run the mathatron, once you get out to 4,200 megaparsecs away, two galaxies will see each other traveling away faster than the speed of light. How big Is that, is it larger than the Universe?

The first light ever, the cosmic microwave background radiation, is 46 billion light-years away from us in all directions. I did the math and 4,200 megaparsecs is a little over 13.7 billion light-years.There’s mountains of room for objects to be more than 4,200 megaparsecs away from each other. Thanks Universe?!?

Most of the Universe we can see is already racing away at faster than the speed of light. So how it’s possible to see the light from any galaxies moving faster than the speed of light. How can we even see the Cosmic Microwave Background Radiation? Thanks Universe.

WMAP data of the Cosmic Microwave Background. Credit: NASA
WMAP data of the Cosmic Microwave Background. Credit: NASA

Light emitted by the galaxies is moving towards us, while the galaxy itself is traveling away from us, so the photons emitted by all the stars can still reach us. These wavelengths of light get all stretched out, and duckslide further into the red end of the spectrum, off to infrared, microwave, and even radio waves. Given time, the photons will be stretched so far that we won’t be able to detect the galaxy at all.

In the distant future, all galaxies and radiation we see today will have faded away to be completely undetectable. Future astronomers will have no idea that there was ever a Big Bang, or that there are other galaxies outside the Milky Way. Thanks Universe.

I stand with Einstein when I say that nothing can move faster than light through space, but objects embedded in space can appear to expand faster than the speed of light depending on your perspective.

What aspects about cosmology still give you headaches? Give us some ideas for topics in the comments below.

What Shape is the Universe?

It’s a reasonable question to wonder what the shape of the Universe is. Is it a sphere? A torus? Is it open or closed, or flat? And what does that all mean anyway?

The Universe. It’s the only home we’ve ever known. Thanks to its intrinsic physical laws, the known constants of nature, and the heavy-metal-spewing fireballs known as supernovae we are little tiny beings held fast to a spinning ball of rock in a distant corner of space and time.

Doesn’t it seem a little rude not to know much about the Universe itself? For instance, if we could look at it from outside, what would we see? A vast blackness? A sea of bubbles? Snow globe? Rat maze? A marble in the hands of a larger-dimensional aliens or some other prog rock album cover?

As it turns out, the answer is both simpler and weirder than all those options. What does the Universe look like is a question we love to guess at as a species and make up all kinds of nonsense.

Hindu texts describe the Universe as a cosmic egg, the Jains believed it was human-shaped. The Greek Stoics saw the Universe as a single island floating in an otherwise infinite void, while Aristotle believed it was made up of a finite series of concentric spheres, or perhaps it’s simply “turtles all the way down”.

Thanks to the mathematical genius of Einstein, cosmologists can actually test out the validity of various models that describe the Universe’s shape, turtles, mazes, and otherwise.

There are three main flavors that scientists consider: positively-curved, negatively-curved, and flat. We know it exists in at least four dimensions, so any of the shapes we are about to describe are bordering on Lovecraftian madness geometry, so fire up your madness abacus. Ya! Ya! Cthulhu ftagen.

A positively-curved Universe would look somewhat like a four-dimensional sphere. This type of Universe would be finite in space, but with no discernible edge. In fact, two distant particles travelling in two straight lines would actually intersect before ending up back where they started.

You can try this at home. Grab a balloon and draw a straight line with a sharpie. Your line eventually meets its starting point. A second line starting on the opposite side of the balloon will do the same thing, and it will cross your first line before meeting itself again.

This type of Universe, conveniently easy to imagine in three dimensions – would only arise if the cosmos contained a certain, large amount of energy.

To be positively-curved, or closed, the Universe would first have to stop expanding – something that would only happen if the cosmos housed enough energy to give gravity the leading edge. Present cosmological observations suggest that the Universe should expand forever. So, for now, we’re tossing out the easy to imagine scenario.

A negatively-curved Universe would look like a four-dimensional saddle. Open, without boundaries in space or time. It would contain too little energy to ever stop expanding.

Here two particles traveling on straight paths would never meet. In fact, they would continuously diverge, getting farther and farther away from each other as infinite time spiraled on.

If the Universe is found to contain a Goldilocks-specific, critical amount of energy, teetering perilously between the extremes, its expansion will halt after an infinite amount of time,

This type of Universe is called a flat Universe. Particles in a flat cosmos continue on their merry way in parallel straight paths, never to meet, but never to diverge either.

Sphere, saddle, flat plane. Those are pretty easily to picture. There are other options too – like a soccer ball, a doughnut, or a trumpet.

A soccer ball would look much like a spherical Universe, but one with a very particular signature – a sort of hall of mirrors imprinted on the cosmic microwave background.

The doughnut is technically a flat Universe, but one that is connected in multiple places. Some scientists believe that large warm and cool spots in the CMB could actually be evidence for this kind of tasty topology.

Lastly, we come to the trumpet. This is another way to visualize a negatively-curved cosmos: like a saddle curled into a long tube, with one very flared end and one very narrow end. Someone in the narrow end would find their cosmos to be so cramped, it only had two dimensions. Meanwhile, someone else in the flared end could only travel so far before they found themselves inexplicably turned around and flying the other way.

So which is it? Is our Universe an orange or a bagel? Is it Pringles? A cheese slice? Brass or woodwind? Scientists have not yet ruled out the more wacky, negatively-curved suggestions, such as the saddle or the trumpet.

WMAP data of the Cosmic Microwave Background. Credit: NASA
WMAP data of the Cosmic Microwave Background. Credit: NASA

Haters are going to argue that we will never know what the true shape of our Universe is. Those people are no fun, and are just obstructionists. Seriously, let us help you get better friends.

Based on the most recent Planck data, released in February 2015, our Universe is most likely… Flat. Infinitely finite, not curved even a little bit, with an exact, critical amount of energy supplied by dark matter and dark energy.

I know this gets a little confusing, and meanders right up to the border of nap time, but here’s what I’m hoping you’ll take away from all this.

It’s amazing that not only can we make guesses at what our incredible universe looks like, but that there’s clever people working tirelessly to help us figure that out. It’s one of the things that makes me happiest about talking every week about space and astronomy. I just can’t wait to see what’s next.

So what do you think? Is a flat Universe too boring for your taste? What shape would you like the Universe to be, given the wide array of options?

Thanks for watching! Never miss an episode by clicking subscribe.

Our Patreon community is the reason these shows happen. We’d like to thank Fred Manzella, Todd Sanders, and the rest of the members who support us in making great space and astronomy content. Members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team.

Want to get in on the action? Click here.

Weekly Space Hangout – April 24, 2015: Bas Lansdorp, CEO of Mars One

Host: Fraser Cain (@fcain)
Special Guest: Bas Lansdorp, CEO of Mars One
Guests:
Morgan Rehnberg (cosmicchatter.org / @MorganRehnberg )
Brian Koberlein (@briankoberlein)
Alessondra Springmann (@sondy)
Dave Dickinson (@astroguyz / www.astroguyz.com)
Continue reading “Weekly Space Hangout – April 24, 2015: Bas Lansdorp, CEO of Mars One”

Is the Universe Finite or Infinite?

Two possiblities exist: either the Universe is finite and has a size, or it’s infinite and goes on forever. Both possibilities have mind-bending implications.

In another episode of Guide to Space, we talked: “how big is our Universe”. Then I said it all depends on whether the Universe is finite or infinite. I mumbled, did some hand waving, glossed over the mind-bending implications of both possibilities and moved on to whatever snarky sci-cult reference was next because I’m a bad host. I acted like nothing happened and immediately got off the elevator.

So, in the spirit of he who smelled it, dealt it. I’m back to shed my cone of shame and talk big universe. And if the Universe is finite, well, it’s finite. You could measure its size with a really long ruler. You could also follow up statements like that with all kinds of crass shenanigans. Sure, it might wrap back on itself in a mindbending shape, like a of monster donut or nerdecahedron, but if our Universe is infinite, all bets are off. It just goes on forever and ever and ever in all directions. And my brain has already begun to melt in anticipation of discussing the implications of an infinite Universe.

Haven’t astronomers tried to figure this out? Of course they have, you fragile mortal meat man/woman! They’ve obsessed over it, and ordered up some of the most powerful sensitive space satellites ever built to answer this question.Astronomers have looked deep at the Cosmic Microwave Background Radiation, the afterglow of the Big Bang. So, how would you test this idea just by watching the sky?

Here’s how smart they are. They’ve searched for evidence that features on one side of the sky are connected to features on the other side of the sky, sort of like how the sides of a Risk map connect to each other, or there’s wraparound on the PacMan board. And so far, there’s no evidence they’re connected.

In our hu-man words, this means 13.8 billion light-years in all directions, the Universe doesn’t repeat. Light has been travelling towards us for 13.8 billion years this way, and 13.8 billion years that way, and 13.8 billion years that way; and that’s just when the light left those regions. The expansion of the Universe has carried them from 47.5 billion light years away. Based on this, our Universe is 93 billion light-years across. That’s an “at least” figure. It could be 100 billion light-years, or it could be a trillion light-years. We don’t know. Possibly, we can’t know. And it just might be infinite.

If the Universe is truly infinite, well then we get a very interesting outcome; something that I guarantee will break your brain for the entire day. After moments like this, I prefer to douse it in some XKCD, Oatmeal and maybe some candy crush.

Artist's conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration - D. Ducros
Artist’s conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration – D. Ducros

Consider this. In a cubic meter (or yard) of space. Alright, in a box of space about yay big (show with hands), there’s a finite number of particles that can possibly exist in that region, and those particles can have a finite number of configurations considering their spin, charge, position, velocity and so on.

Tony Padilla from Numberphile has estimated that number to be 10 to the power of 10 to the power of 70. That’s a number so big that you can’t actually write it out with all the pencils in the Universe. Assuming of course, that other lifeforms haven’t discovered infinite pencil technology, or there’s a pocket dimension containing only pencils. Actually, it’s probably still not enough pencils.

There are only 10 ^ 80 particles in the observable Universe, so that’s much less than the possible configurations of matter in a cubic meter. If the Universe is truly infinite, if you travel outwards from Earth, eventually you will reach a place where there’s a duplicate cubic meter of space. The further you go, the more duplicates you’ll find.

Ooh, big deal, you think. One hydrogen pile looks the same as the next to me. Except, you hydromattecist, you’ll pass through places where the configuration of particles will begin to appear familiar, and if you proceed long enough you’ll find larger and larger identical regions of space, and eventually you’ll find an identical you. And finding a copy of yourself is just the start of the bananas crazy things you can do in an infinite Universe.

The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)
The Hubble Ultra Deep Field seen in ultraviolet, visible, and infrared light. Image Credit: NASA, ESA, H. Teplitz and M. Rafelski (IPAC/Caltech), A. Koekemoer (STScI), R. Windhorst (Arizona State University), and Z. Levay (STScI)

In fact, hopefully you’ll absorb the powers of an immortal version of you, because if you keep going you’ll find an infinite number of yous. You’ll eventually find entire duplicate observable universes with more yous also collecting other yous. And at least one of them is going to have a beard.

So, what’s out there? Possibly an infinite number of duplicate observable universes. We don’t even need multiverses to find them. These are duplicate universes inside of our own infinite universe. That’s what you can get when you can travel in one direction and never, ever stop.

Whether the Universe is finite or infinite is an important question, and either outcome is mindblenderingly fun. So far, astronomers have no idea what the answer is, but they’re working towards it and maybe someday they’ll be able to tell us.

So what do you think? Do we live in a finite or infinite universe? Tell us in the comments below.

How Far Back Are We Looking in Time?

When we look out into space, we’re also looking back into time. Just how far back can we see?

The Universe is a magic time window, allowing us to peer into the past. The further out we look, the further back in time we see. Despite our brains telling us things we see happen at the instant we view them, light moves at a mere 300,000 kilometers per second, which makes for a really weird time delay at great distances.

Let’s say that you’re talking with a friend who’s about a meter away. The light from your friend’s face took about 3.336 nanoseconds to reach you. You’re always seeing your loved ones 3.336 nanoseconds into the past. When you look around you, you’re not seeing the world as it is, you’re seeing the world as it was, a fraction of a second ago. And the further things are, the further back in time you’re looking.

The distance to the Moon is, on average, about 384,000 km. Light takes about 1.28 seconds to get from the Moon to the Earth. If there was a large explosion on the Moon of a secret Nazi base, you wouldn’t see it for just over a second. Even trying to communicate with someone on the Moon would be frustrating as you’d experience a delay each time you talked.

Let’s go with some larger examples. Our Sun is 8 minutes and 20 seconds away at the speed of light. You’re not seeing the Sun as it is, but how it looked more than 8 minutes ago.

On average, Mars is about 14 light minutes away from Earth. When we were watching live coverage of NASA’s Curiosity Rover landing on Mars, it wasn’t live. Curiosity landed minutes earlier, and we had to wait for the radio signals to reach us, since they travel at the speed of light.

When NASA’s New Horizons spacecraft reaches Pluto next year, it’ll be 4.6 light hours away. If we had a telescope strong enough to watch the close encounter, we’d be looking at events that happened 4.6 hours ago.

A Hubble Space Telescope image of Proxima Centauri, the closest star to Earth. Credit: ESA/Hubble & NASA
A Hubble Space Telescope image of Proxima Centauri, the closest star to Earth. Credit: ESA/Hubble & NASA

The closest star, Proxima Centauri, is more than 4.2 light-years away. This means that the Proxima Centurans don’t know who won the last US Election, or that there are going to be new Star Wars movies. They will, however, as of when this video was produced, be watching Toronto make some questionable life choices regarding its mayoral election.

The Eagle Nebula with the famous Pillars of Creation, is 7,000 light-years away. Astronomers believe that a supernova has already gone off in this region, blasting them away. Take a picture with a telescope and you’ll see them, but mostly likely they’ve been gone for thousands of years.

The core of our own Milky Way galaxy is about 25,000 light-years away. When you look at these beautiful pictures of the core of the Milky Way, you’re seeing light that may well have left before humans first settled in North America.

The Andromeda Galaxy will collide with the Milky Way in the future. Credit: Adam Evans
The Andromeda Galaxy. Credit: Adam Evans

And don’t get me started on Andromeda. That galaxy is more than 2.5 million light-years away. That light left Andromeda before we had Homo Erectus on Earth. There are galaxies out there, where aliens with powerful enough telescopes could be watching dinosaurs roaming the Earth, right now.

Here’s where it gets even more interesting. Some of the brightest objects in the sky are quasars, actively feeding supermassive black holes at the cores of galaxies. The closest is 2.5 billion light years away, but there are many much further out. Earth formed only 4.5 billion years ago, so we can see quasars shining where the light had left before the Earth even formed.

The Cosmic Microwave Background Radiation, the very edge of the observable Universe is about 13.8 billion light-years away. This light left the Universe when it was only a few hundred thousand years old, and only now has finally reached us. What’s even stranger, the place that emitted that radiation is now 46 billion light-years away from us.

So crack out your sonic screwdrivers and enjoy your time machine, Whovians. Your ability to look out into space and peer into the past. Without a finite speed of light, we wouldn’t know as much about the Universe we live in and where we came from. What moment in history do you wish you could watch? Express your answer in the form of a distance in light-years.

What Will We Never See?

Thanks to our powerful telescopes, there are so many places in the Universe we can see. But there are places hidden from us, and places that we’ll never be able to see.

We’re really lucky to live in our Universe with our particular laws of physics. At least, that’s what we keep telling ourselves. The laws of physics can be cruel and unforgiving, and should you try and cross them, they will crush you like a bug.

Here at Universe Today, we embrace our Physics overlords and prefer to focus on the positive, the fact that light travels at the speed of light is really helpful. This allows us to look backwards in time as we look further out. Billions of light-years away, we can see what the Universe looked like billions of years ago. Physics is good. Physics knows what’s best. Thanks physics. And where the hand of physics gives, it can also take away.

There are some parts of the Universe that we’ll never, ever be able to see. No matter what we do. They’ll always remain just out of reach. No matter how much we plead, in some sort of Kafka-esque nightmare, these rules do not appear to have conscience or room for appeal.

As we look outward in the cosmos, we look backwards in time and at the very edge of our vision is the Cosmic Microwave Background Radiation. The point after the Big Bang where everything had cooled down enough so it was no longer opaque. Light could finally escape and travel through a transparent Universe. This happened about 300,000 years after the Big Bang. What happened before that is a mystery. We can calculate what the Universe was like, but we can’t actually look at it. Possibly, we just don’t have the right clearance levels.

On the other end of the timeline, in the distant distant future. Assuming humans, or our Terry Gilliam inspired robot bodies are still around to observe the Universe, there will be a lot less to see. Distance is also out to rain on our sightseeing safari. The expansion of the Universe is accelerating, and galaxies are speeding away from each other faster and faster. Eventually, they’ll be moving away from us faster than the speed of light.

What would you see at the speed of light/
What would you see at the speed of light/

When that happens, we’ll see the last few photons from those distant galaxies, redshifted into oblivion. And then, we won’t see any galaxies at all. Their light will never reach us and our skies will be eerily empty. Just don’t let physics hear a sad tone in your voice, we don’t want to spend another night in the “joy re-education camps”

Currently, we can see a sphere of the Universe that measures 92 billion light-years across. Outside that sphere is more Universe, a hidden, censored Universe. Universe that we can’t see because the light hasn’t reached us yet. Fortunately, every year that goes by, a little less Universe is redacted from the record, and the sphere we can observe gets bigger by one light-year. We can see a little more in all directions.

Finally, let’s consider what’s inside the event horizon of a black hole. A place that you can’t look at, because the gravity is so strong that light itself can never escape it. So by definition, you can’t see what absorbs all its own light. Astronomers don’t know if black holes crunch down to a physical sphere and stop shrinking, or continue shrinking forever, getting smaller and smaller into infinity. Clearly, we can’t look there because we shouldn’t be looking there. They’re terrible places. The possibility of shrinking forever gives me the heebies.

Artistic view of a radiating black hole.  Credit: NASA
Artistic view of a radiating black hole. Credit: NASA

And so, good news! The chocolate ration has been increased from 40 grams to 25 grams, and our physics overlords are good, can only do good, and always know what’s best for us. In fact, so good that gravity might actually provide us with a tool to “see” these hidden places, but only because “they” want us to.

When black holes form, or massive objects smash into each other, or there are “Big Bangs”, these generate distortions in spacetime called gravitational waves. Like gravity itself, these propagate across the Universe and could be detected.It’s possible we could use gravitational waves to “see” beyond the event horizon of a black hole, or past the Cosmic Microwave Background Radiation.

The problem is that gravitational waves are so faint, we haven’t even detected a single one yet. But that’s probably just a technology problem. In the end, we need a more sensitive observatory. We’ll get there. Alternately we could apply to the laws of physics board of appeals and fill in one of their 2500 page application forms in triplicate and see if we can be granted a rules exception, and maybe just get a tiny little peek behind that veil.

We live an amazing Universe, most of which we’ll never be able to see. But that’s okay, there’s enough we can see to keep us busy until infinity. What law of physics would you like to be granted a special exception to ignore. Tell us in the comments below.

How Do We Know How Old Everything Is?

We hear that rocks are a certain age, and stars are another age. And the Universe itself is 13.7 billion years old. But how do astronomers figure this out?

I know it’s impolite to ask, but, how old are you? And how do you know? And doesn’t comparing your drivers license to your beautiful and informative “Year In Space” calendar feel somewhat arbitrary? How do we know old how everything is when what we observe was around long before calendars, or the Earth, or even the stars?

Scientists have pondered about the age of things since the beginning of science. When did that rock formation appear? When did that dinosaur die? How long has the Earth been around? When did the Moon form? What about the Universe? How long has that party been going on? Can I drink this beer yet, or will I go blind? How long can Spam remain edible past its expiration date?

As with distance, scientists have developed a range of tools to measure the age of stuff in the Universe. From rocks, to stars, to the Universe itself. Just like distance, it works like a ladder, where certain tools work for the youngest objects, and other tools take over for middle aged stuff, and other tools help to date the most ancient.

Let’s start with the things you can actually get your hands on, like plants, rocks, dinosaur bones and meteorites. Scientists use a technique known as radiometric dating. The nuclear age taught us how to blow up stuff real good, but it also helped understand how elements transform from one element to another through radioactive decay.

For example, there’s a version of carbon, called carbon-14. If you started with a kilo of it, after about 5,730 years, half of it would have turned into carbon-12. And then by 5,730 more years, you’d have about ¼ carbon-14 and ¾ carbon-12.

A list of the elements with their corresponding visible light emission spectra. Image Credit: MIT Wavelength Tables, NIST Atomic Spectrum Database, umop.net
A list of the elements with their corresponding visible light emission spectra. Image Credit: MIT Wavelength Tables, NIST Atomic Spectrum Database, umop.net

This is known as an element’s half-life. And so, if you measure the ratio of carbon-12 to carbon-14 in a dead tree, for example, you can calculate how long ago it lived. Different elements work for different ages. Carbon-14 works for the last 50,000 years or so, while Uranium-238 has a half-life of 4.5 billion years, and will let you date the most ancient of rocks. But what about the stuff we can’t touch, like stars?

When you use a telescope to view a star, you can break up its light into different colors, like a rainbow. This is known as a star’s spectra, and if you look carefully, you can see black lines, or gaps, which correspond to certain elements. Since they can measure the ratios of different elements, astronomers can just look at a star to see how old it is. They can measure the ratio of uranium-238 to lead-206, and know how long that star has been around. How astronomers know the age of the Universe itself is one of my favorites, and we did a whole episode on this.

Artist's conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration - D. Ducros
Artist’s conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration – D. Ducros

The short answer is, they measure the wavelength of the Cosmic Microwave Background Radiation. Since they know this used to be visible light, and has been stretched out by the expansion of the Universe, they can extrapolate back from its current wavelength to what it was at the beginning of the Universe. This tells them the age is about 13.8 billion years. Radiometric dating was a revolution for science. It finally gave us a dependable method to calculate the age of anything and everything, and finally figure out how long everything has been around.

So, fan of our videos. How old are you? Tell us in the comments below.
Thanks for watching! Never miss an episode by clicking subscribe.Our Patreon community is the reason these shows happen. We’d like to thank Ryan Finley and the rest of the members who support us in our quest to make great space and astronomy content every week. Our community members get advance access to episodes, extras, contests, and other shenanigans with Jay, myself and the rest of the team. Want to get in on the action? Click here.

Why Can’t We See the Big Bang?

Since telescopes let us look back in time, shouldn’t we be able to see all the way back to the very beginning of time itself? To the moment of the Big Bang?

You’ve probably heard that looking out into space is like looking back in time. As it takes light 1 second to get from the Moon to us. Whenever we view it, we’re seeing it 1 second in the past. The Sun is 8 light minutes away, and the light we see from it is from 8 minutes into the past.

A better example might be Andromeda, it’s 2.5 million light years away… and you guessed it, we’re seeing it 2.5 million years in the past. Since the Big Bang happened 13.7 billion years ago, using this idea, shouldn’t we be able look all the way back to the beginning of time, even if we’ve misplaced the key to our Tardis?

At the very beginning of the Universe, seconds after the Big Bang, everything was mushed together. Energy and matter were the same thing. Dogs and cats lived together. There was no difference between light and radiation, it was all just one united force.

You couldn’t see it, because light didn’t actually exist. There were no such thing as photons.

However, if you’re still insisting there’s no such thing as photons, you might want to check yourself. After these things started to separate. Photons and particles became actual things. Electromagnetism and the weak nuclear force split off and formed new bands, but could never quite get the momentum of the original lineup.

By the end of the first second, neutrons and protons were around, and they were getting mashed by the intense heat and pressure into the first elements. But you still couldn’t see that because the whole Universe was like the inside of a star. Everything was opaque. It was Scarlett Johansson hot, and too crazy to form stable atoms with electrons as we see today.

Artist's conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration - D. Ducros
Artist’s conception of Planck, a space observatory operated by the European Space Agency, and the cosmic microwave background. Credit: ESA and the Planck Collaboration – D. Ducros

After the Universe was about 380,000 years old, it had cooled down to the point that proper atoms could form. This is the moment when light could finally move, and travel distances across the Universe to you and get caught up in your light buckets. In fact, this light is known as the cosmic microwave background radiation.

So, how come we don’t see all this freed light in all directions with our eyes? It’s because the region of space where it exists is so far away, and travelling away from us so quickly. The light’s wavelengths have been stretched out to the point that light has been turned into microwaves. It’s only with sensitive radio telescopes and space missions that astronomers can even detect it.

Unfortunately, we’ll never be able to see the Big Bang. Even though we’re looking back in time, right to the edge of the observable Universe, it’s just beyond our reach. If you could look at the Universe at any point in time, what would it be? Tell us in the comments below.

And if you like what you see, come check out our Patreon page and find out how you can get these videos early while helping us bring you more great content!