Falcon 9 Failure Investigation Focuses on Data not Debris as SpaceX Seeks Root Cause

KENNEDY SPACE CENTER, FL – SpaceX and NASA are diligently working to “identify the root cause” of the June 28 in flight failure of the firms Falcon 9 rocket, as the accident investigation team focuses on “flight data” rather than recovered debris as the best avenue for determining exactly what went wrong, a SpaceX spokesperson told Universe Today.

The SpaceX Falcon 9 booster broke up just minutes after a picture perfect blastoff from a seaside Florida launch pad on a critical mission for NASA bound for the International Space Station (ISS). It was carrying a SpaceX Dragon cargo freighter loaded with research equipment and new hardware to enable crewed spaceships to dock at the orbiting outpost.

The accident investigation team is still seeking the root cause of the launch failure through a complex fault tree analysis.

“The process for determining the root cause of Sunday’s mishap is complex, and there is no one theory yet that is consistent with the data,” said SpaceX spokesman John Taylor.

The accident investigation is in full swing both at the Cape and SpaceX headquarters in Hawthorne, Ca.

“Our engineering teams are heads down reviewing every available piece of flight data as we work through a thorough fault tree analysis in order to identify root cause.”

Hans Koenigsmann, SpaceX VP of Mission Assurance, is leading the accident investigation for SpaceX.

The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left).  Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission.  Credit: Ken Kremer/kenkremer.com
The SpaceX Falcon 9 rocket and Dragon cargo spaceship dazzled in the moments after liftoff from Cape Canaveral, Florida, on June 28, 2015 but were soon doomed to a sudden catastrophic destruction barely two minutes later in the inset photo (left). Composite image includes up close launch photo taken from pad camera set at Space Launch Complex 40 at Cape Canaveral and mid-air explosion photo taken from the roof of the Vehicle Assembly Building (VAB) at NASA’s Kennedy Space Center, Florida as rocket was streaking to the International Space Station (ISS) on CRS-7 cargo resupply mission. Credit: Ken Kremer/kenkremer.com

SpaceX is conducting an intense and thorough investigation with the active support of various government agencies including the FAA, NASA and the U.S. Air Force.

The SpaceX Falcon 9 and Dragon were destroyed just over two minutes after a stunning liftoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in sunny Florida at 10:21 a.m. EDT.

The SpaceX CRS-7 cargo resupply mission to the ISS began flawlessly. The nine Merlin 1D engines powering the Falcon 9 rockets first stage were firing nominally at launch to produce about 1.3 million pounds of liftoff thrust for almost their entire duration.

However, approximately 139 seconds into the planned 159 second firing of the first stage engine, the majestic blastoff went awry as the upper stage of the vehicle experienced an as yet unexplained anomaly and suddenly exploded, vaporizing into a grayish cloud at supersonic speed and raining debris down into the Atlantic Ocean.

SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Alex Polimeni
SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Alex Polimeni

The Falcon 9 has transmitting data on over 3,000 channels of flight data streams.

But something went wrong apparently with the upper stage said SpaceX CEO Elon Musk.

“There was an overpressure event in the upper stage liquid oxygen tank. Data suggests counterintuitive cause,” tweeted Musk.

But why that happened and the vehicle disintegrated in mere seconds is still a mystery to be resolved through careful fault tree analysis of the data.

“Cause still unknown after several thousand engineering-hours of review. Now parsing data with a hex editor to recover final milliseconds.”

While SpaceX and Coast Guard ships have recovered some debris in the days since the launch mishap, the data streams are expected to be the most useful source of information to the investigation team.

Hex editors are being used to comb through the data.

A hex editor (or binary file editor or byte editor) is a type of computer program that allows for manipulation of the fundamental binary data that constitutes a computer file.

The name ‘hex’ comes from ‘hexadecimal’: a standard numerical format for representing binary data.

Some data was transmitted after the breakup.

The accident investigation teams are currently in the process of recreating the final milliseconds of the flight to give them some additional insights into what may have happened, when and why.

View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.  The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015.  Credit: Ken Kremer/kenkremer.com
View of International Docking Adapter 2 (IDA-2) being processed inside the Space Station Processing Facility (SSPF) at NASA Kennedy Space Center for eventual launch to the ISS in the trunk of a SpaceX Dragon on the CRS-9 mission. It will be connected to the station to provide a port for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017. The identical IDA-1 was destroyed during SpaceX CRS-7 launch failure on June 28, 2015. Credit: Ken Kremer/kenkremer.com

In the meantime all SpaceX launches are on hold for several months at least.

The next Falcon 9 launch scheduled was for NASA’s Jason 3 from Vandenberg Air Dorce Base in California

The next SpaceX cargo Dragon had been scheduled for liftoff in September 2015 on the CRS-8 mission, but is now postponed pending the results of the return to flight investigation.

Umbilicals away and detaching from SpaceX Falcon 9 launch  from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter.  Credit: Ken Kremer/kenkremer.com
Umbilicals away and detaching from SpaceX Falcon 9 launch from Cape Canaveral, Florida, on June 28, 2015 that was doomed to disaster soon thereafter. Credit: Ken Kremer/kenkremer.com

There are sufficient supplies on board the ISS to keep the crew continuing their mission until at least October 2015.

The SpaceX CRS-7 Dragon was loaded with over 4,000 pounds (1987 kg) of research experiments, an EVA spacesuit, water filtration equipment, spare parts, gear, computer equipment, high pressure tanks of oxygen and nitrogen supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These included critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising Scott Kelly and Mikhail Kornienko.

The Dragon was also packed with the first of two new International Docking Adapters (IDS’s) required for the new commercial crew space taxis to dock at the ISS starting in 2017.

Another Russian Progress vehicle is set to fly on the next resupply mission from the Baikonur Cosmodrome on Friday, July 3.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Julian Leek
SpaceX Falcon 9 rocket launch from Cape Canaveral, Florida, on June 28, 2015. Credit: Julian Leek
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 rocket and Dragon resupply spaceship explode about 2 minutes after liftoff from Cape Canaveral Air Force Station in Florida on June 28, 2015. Credit: Ken Kremer/kenkremer.com

SpaceX set for Station Resupply Blastoff with Crew Docking Adapter and Bold Landing Attempt on June 28 – Watch Live

SpaceX Falcon 9 and Dragon are due to blastoff on June 28, 2015 from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida at 10:21 a.m. EDT on the CRS-7 mission to the International Space Station. Photo of last SpaceX launch to ISS in April 2015. Credit: Ken Kremer/kenkremer.com
Story updated[/caption]

KENNEDY SPACE CENTER, FL – With launch less than a day away for SpaceX’s seventh commercial resupply mission carrying a two ton payload of critical science and cargo for the future buildup of human spaceflight to the International Space Station (ISS) on Sunday, June 28, “everything is looking great” and all systems are GO, Hans Koenigsmann, SpaceX VP of mission assurance announced at a media briefing for reporters at the Kennedy Space Center.

The weather outlook along the Florida Space Coast is fantastic as U.S. Air Force 45th Weather Squadron forecasters are predicting a 90 percent chance of favorable conditions for lift off of the SpaceX Falcon 9 rocket and Dragon spacecraft, slated for 10:21 a.m. EDT, Sunday, June 28, from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-7 mission.

If you are free this weekend and all continues to go well, this could well be your chance to be an eyewitness to a magnificent space launch in sunny Florida – and see a flight that signifies significant progress towards restoring America’s ability to once again launch our astronauts on American rockets from American soil.

NASA Television plans live launch coverage starting at 9 a.m EDT on June 28:

You can watch the launch live on NASA TV here: http://www.nasa.gov/nasatv

SpaceX also plans live launch coverage: www.spacex.com/webcast

Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com
Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays like on Monday due to weather or technical factors will force a scrub.

The mission is critical for NASA in more ways than one, in addition to the science cargo, the SpaceX Dragon spaceship is loaded with the first of two International Docking Adapters (IDA’s), pictured below, that will be connected to the space station to provide a place for Commercial Crew spacecraft carrying astronauts to dock to the orbiting laboratory as soon as 2017.

The approximately 30 inch thick and ring shaped IDA is loaded in the unpressurized truck section at the rear of the Dragon.

The pressurized section of the Dragon is packed with over 4,000 pounds of research experiments, spare parts, gear, high pressure supply gases, food, water and clothing for the astronaut and cosmonaut crews comprising Expeditions 44 and 45.

These include critical materials for the science and research investigations for the first ever one-year crew to serve aboard the ISS – comprising NASA astronaut Scott Kelly and Russian cosmonaut Mikhail Kornienko.

The science payloads will offer new insight to combustion in microgravity, perform the first space-based observations of meteors entering Earth’s atmosphere, continue solving potential crew health risks and make new strides toward being able to grow food in space, says NASA.

Some three dozen student science experiments are also flying aboard. The cargo also includes the METEOR camera.

Both IDA’s were built by Boeing. They will enable docking by the new space taxis being built by Boeing and Space X – the CST-100 and crew Dragon respectively, to carry our crews to the ISS and end our sole source reliance on the Russian Soyuz capsule.

IDA 1 will be attached to the forward port on the Harmony node, where the space shuttles used to dock.

Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com
Moon over SpaceX Falcon 9 and Dragon at Cape Canaveral Air Force Station for CRS-7 mission to ISS. Credit: Ken Kremer/kenkremer.com

If Dragon launches on Sunday as planned, it will reach the space station after a two day pursuit on Tuesday, June 30.

NASA’s Scott Kelly of NASA will use the station’s Canadarm2 robotic arm to reach out and capture Dragon at about 7 a.m. He will be assisted by Station commander Gennady Padalka of the Russian Federal Space Agency (Roscosmos) as they operate the 57 foot long arm from the station’s cupola.

NASA TV coverage of rendezvous and grapple of Dragon will begin at 5:30 a.m. on Tuesday. Coverage of Dragon’s installation to the Earth-facing port of the Harmony module will begin at 8:30 a.m.

The ship will remain berthed at the ISS for about five weeks.

Watch for Ken’s continuing onsite coverage of the CRS-7 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Boeing, Space Taxis, Europa, Rosetta, Mars rovers, Orion, SLS, Antares, NASA missions and more at Ken’s upcoming outreach events:

Jun 27-28: “SpaceX launch, Orion, Commercial crew, Curiosity explores Mars, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

SpaceX Falcon 9 and Dragon poised at Cape Canaveral Space Launch Complex 40 in Florida for planned April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon poised at Cape Canaveral Space Launch Complex 40 in Florida for planned April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com

Dragon Snared by Stations ‘Star Trek’ Crewmate, Delivers Science for 1 Year Mission

KENNEDY SPACE CENTER, FL – Following the flawless blastoff of the SpaceX Falcon 9 booster and Dragon cargo ship on Tuesday, April 14, the resupply vessel arrived at the International Space Station today, April 17, and was successful snared by the outposts resident ‘Star Trek’ crewmate, Expedition 43 Flight Engineer Samantha Cristoforetti of the European Space Agency, donning her futuristic outfit from the famed TV show near and dear to space fans throughout the known galaxy!

Cristoforetti grappled the SpaceX Dragon freighter with the station’s robotic arm at 6:55 a.m. EDT, with the able assistance of fellow crewmate and Expedition 43 Commander Terry Virts of NASA.

Dragon is hauling critical supplies to the six astronauts and cosmonauts serving aboard, that now includes the first ever ‘One-Year Mission’ crew comprising NASA’s Scott Kelly and Russia’s Mikhail Kornienko.

Cristoforetti and Virts were manipulating the 57.7-foot-long (17-meter-long) Canadian-built robotic arm while working inside the stations seven windowed domed Cupola, that reminds many of Darth Vader’s lair in ‘Star Wars’ lore.

Success! @SpaceX #Dragon is attached to deliver 2 tons of science & supplies for @Space_Station crew. #ISScargo
Success! @SpaceX #Dragon is attached to deliver 2 tons of science & supplies for @Space_Station crew. #ISScargo

The SpaceX Dragon blasted off atop a Falcon 9 booster from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT (2010:41 GMT) on the CRS-6 (Commercial Resupply Services-6) mission bound for the space station.

The Dragon cargo spacecraft was berthed to the Earth facing port of Harmony module of the International Space Station at 9:29 a.m. EDT.

The entire multihour grappling and berthing operations were carried live on NASA TV, for much of the morning and everything went smoothly.

The crew plans to open the hatch between Dragon and the station on Saturday.

The SpaceX Dragon space freighter is in the grips of the Canadarm2 robotic arm. Credit: NASA TV
The SpaceX Dragon space freighter is in the grips of the Canadarm2 robotic arm. Credit: NASA TV

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

Dragon is loaded with more than 4,300 pounds of supplies, science experiments, and technology demonstrations, including critical materials to support about 40 of more than 250 science and research investigations during the station’s Expeditions 43 and 44.

Among the research investigations are a fresh batch of 20 rodents for the Rodent Research Habitat, and experiments on osteoporosis to counteract bone deterioration in microgravity, astronaut vision loss, protein crystal growth, and synthetic muscle for prosthetics and robotics.

An Espresso machine is also aboard to enhance station morale during the daily grind some 250 miles above Earth.

Following the April 14 launch, SpaceX made a nearly successful soft landing of the first stage on an ocean floating platform in the Atlantic Ocean. Read my story – here.

Read Ken’s earlier onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT  on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon blastoff from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida on April 14, 2015 at 4:10 p.m. EDT on the CRS-6 mission to the International Space Station. Credit: Ken Kremer/kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

Watch @AstroSamantha move #Canadarm2 into place to capture the @SpaceX #Dragon. Credit: NASA
Watch @AstroSamantha move #Canadarm2 into place to capture the @SpaceX #Dragon. Credit: NASA

SpaceX Falcon 9 and Dragon set for Blastoff and Bold Landing Effort Today – Watch Live

KENNEDY SPACE CENTER, FL – The skies are clear at the moment for today’s, April 14, second attempt to launch the SpaceX Falcon 9 rocket and Dragon resupply capsule on a critical mission for science bound for the International Space Station (ISS) and a bold effort to land the boosters first stage on a tiny barge in the vast expanse of the Atlantic Ocean.

The first attempt to launch the rocket and CRS-6 Dragon cargo capsule on Monday, April 13, was scrubbed just about three minutes before the scheduled blastoff at approximately 4:33 p.m. EDT from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida, due to a violation of the launch weather constraints.

Today’s second liftoff attempt 24 hours later, is slated for approximately 4:10 p.m. from SLC-41.

NASA Television plans live launch coverage starting at 3:00 p.m EDT:

You can watch the launch live on NASA TV here: http://www.nasa.gov/nasatv

SpaceX also plans live launch coverage beginning at 4:15 p.m. EDT: www.spacex.com/webcast

The launch window is instantaneous, meaning that the rocket must liftoff at the precisely appointed time. Any delays like on Monday due to weather or technical factors will force a scrub.

SpaceX Falcon 9 and Dragon erected at Cape Canaveral pad 40 in Florida in advance of April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com
SpaceX Falcon 9 and Dragon erected at Cape Canaveral pad 40 in Florida in advance of April 14 launch to the International Space Station on the CRS-6 mission. Credit: Ken Kremer/kenkremer.com

Another delay would likely result in at least a 48 hour scrub.

U.S. Air Force weather forecasters from the 45th Weather Squadron currently rate the chances of favorable conditions at launch time as 60 percent GO for liftoff of the sixth SpaceX commercial resupply services mission (CRS-6) to the ISS. That’s the same as Monday’s launch attempt.

Air Force meteorologists will be watching for storms or thick clouds moving close to the launch site, as happened in the final hour prior to Monday’s try.

The Falcon 9 first stage is outfitted with four landing legs and grid fins to enable the landing attempt, which is a secondary objective of SpaceX. Cargo delivery to the station is the overriding primary objective and the entire reason for the CRS-6 mission.

Infographic shows how SpaceX Falcon 9 will fly back to Earth after next launch on CRS-6 mission to ISS. Credit: SpaceX
Infographic shows how SpaceX Falcon 9 will fly back to Earth after next launch on CRS-6 mission to ISS. Credit: SpaceX

Overall CRS-6 is the sixth SpaceX commercial resupply services mission and the seventh trip by a Dragon spacecraft to the station since 2012.

CRS-6 marks the company’s sixth operational resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s original Commercial Resupply Services (CRS) contract.

Dragon is packed with more than 4,300 pounds (1915 kilograms) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear for the six person Expedition 43 and 44 crews serving aboard the ISS.

The ship will remain berthed at the ISS for about five weeks.

Watch for Ken’s continuing onsite coverage of the CRS-6 launch from the Kennedy Space Center and Cape Canaveral Air Force Station.

The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch is poised upright to the International Space Station for a launch at 4:10 PM eastern time from Cape Canaveral.  Credit: Alex Polimeni/AmericaSpace
The SpaceX Falcon 9 with the Dragon vessel for the CRS-6 launch is poised upright to the International Space Station for a launch at 4:10 PM eastern time from Cape Canaveral. Credit: Alex Polimeni/AmericaSpace

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer
………….

Learn more about SpaceX, Mars rovers, Orion, Antares, MMS, NASA missions and more at Ken’s upcoming outreach events:

Apr 11-14: “SpaceX, Orion, Commercial crew, Curiosity explores Mars, MMS, Antares and more,” Kennedy Space Center Quality Inn, Titusville, FL, evenings

Apr 18/19: “Curiosity explores Mars” and “NASA Human Spaceflight programs” – NEAF (NorthEast Astronomy Forum), 9 AM to 5 PM, Suffern, NY, Rockland Community College and Rockland Astronomy Club

Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida.  Credit: SpaceX
Introducing Landing Complex 1, formerly Launch Complex 13, at Cape Canaveral in Florida. Credit: SpaceX

Busy Year of 13 Launches by ULA in 2015 Begins with Blastoffs for the Navy and NASA

A busy year of 13 space launches by rocket provider United Launch Alliance (ULA) in 2015 begins with a pair of blastoffs for the US Navy and NASA tonight and next week, emanating from both the US East and West Coasts.

The hefty manifest of 13 liftoffs in 2015 comes hot on the heels of ULA’s banner year in 2014 whereby they completed every one of the firm’s 14 planned launches in 2014 with a 100% success rate.

“What ULA has accomplished in 2014, in support of our customers’ missions, is nothing short of remarkable,” said ULA CEO Tory Bruno.

“When you think about every detail – all of the science, all of the planning, all of the resources – that goes into a single launch, it is hard to believe that we successfully did it at a rate of about once a month, sometimes twice.”

ULA’s stable of launchers includes the Delta II, Delta IV and the Atlas V. They are in direct competition with the Falcon 9 rocket from SpaceX founded by billionaire Elon Musk.

And ULA’s 2015 launch calendar begins tonight with a milestone launch for the US Navy that also marks the 200th launch overall of the venerable Atlas-Centaur rocket that has a renowned history dating back some 52 years to 1962 with multiple variations.

And tonight’s blastoff of the Multi-User Objective System (MUOS-3) satellite for the US Navy involves using the most powerful variant of the rocket, known as the Atlas V 551.

Liftoff of MUOS-3 is set for 7:43 p.m. EDT from Space Launch Complex-41 at Cape Canaveral Air Force Station in Florida. The launch window extends for 44 minutes and the weather outlook is very favorable. It will be carried live on a ULA webcast.

MUOS-3 Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Jan. 20, 2015. Credit: ULA
MUOS-3 Navy communications satellite and Atlas V rocket at pad 41 at Cape Canaveral Air Force Station, FL for launch on Jan. 20, 2015. Credit: ULA

The second ULA launch of 2015 comes just over 1 week later on January 29, lofting NASA’s SMAP Earth observation satellite on a Delta II rocket from Vandenberg Air Force Base in California.

MUOS is a next-generation narrowband tactical satellite communications system designed to significantly improve ground communications for U.S. forces on the move, according to ULA.

This is the third satellite in the MUOS series and will provide military users 10 times more communications capability over existing systems, including simultaneous voice, video and data, leveraging 3G mobile communications technology.

ULA’s second launch in 2015 thunders aloft from the US West Coast with NASA’s Soil Moisture Active Passive mission (SMAP). It is the first US Earth-observing satellite designed to collect global observations of surface soil moisture.

SMAP will blastoff from Space Launch Complex 2 at Vandenberg AFB at 9:20 a.m. EST (6:20 a.m. PST) on ULA’s Delta II rocket.

NASA's Soil Moisture Active Passive mission (SMAP) will lift off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:20 a.m. EST (6:20 a.m. PST) on a United Launch Alliance Delta II rocket.   Credit:  NASA
NASA’s Soil Moisture Active Passive mission (SMAP) will lift off from Space Launch Complex 2 at Vandenberg Air Force Base in California at 9:20 a.m. EST (6:20 a.m. PST) on a United Launch Alliance Delta II rocket. Credit: NASA

“It goes without saying: ULA had a banner year,” Bruno said. “As we look ahead to 2015, we could not be more honored to continue supporting our nation in one of the most technologically complex, critical American needs: affordable, reliable access to space.”

ULA began operations in December 2006 with the merger of the expendable launch vehicle operations of Boeing and Lockheed Martin.

ULA’s Delta IV Heavy is currently the world’s most powerful rocket and flawlessly launched NASA’s Orion capsule on Dec. 5, 2014 on its highly successful uncrewed maiden test flight on the EFT-1 mission.

Overall, the 14-mission launch manifest in 2014 included 9 national security space missions, 3 space exploration missions, including NASA’s Orion EFT-1 and 2 commercial missions.

NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014.   Launch pad remote camera view.   Credit: Ken Kremer - kenkremer.com
NASA’s first Orion spacecraft blasts off at 7:05 a.m. atop United Launch Alliance Delta 4 Heavy Booster at Space Launch Complex 37 (SLC-37) at Cape Canaveral Air Force Station in Florida on Dec. 5, 2014. Launch pad remote camera view. Credit: Ken Kremer – kenkremer.com

Beyond MUOS-3 and SMAP, the launch manifest on tap for 2015 also includes additional NASA science satellites, an ISS commercial cargo resupply mission as well as more GPS satellites for military and civilian uses and top secret national security launches using the Delta II, Delta IV and the Atlas V boosters.

NASA’s Magnetospheric Multiscale Mission (MMS) to study Earth’s magnetic reconnection is scheduled for launch on an Atlas V 421 booster on March 12 from Cape Canaveral. See my up close visit with MMS and NASA Administrator Charles Bolden at NASA Goddard Space Flight Center detailed in my story – here.

NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA's Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014.  Credit: Ken Kremer- kenkremer.com
NASA Administrator Charles Bolden poses with the agency’s Magnetospheric Multiscale (MMS) spacecraft, mission personnel, Goddard Center Director Chris Scolese and NASA Associate Administrator John Grunsfeld, during visit to the cleanroom at NASA’s Goddard Space Flight Center in Greenbelt, Md., on May 12, 2014. Credit: Ken Kremer- kenkremer.com

In March, June and September the GPS 2F-9, 2F-10 and 2F-11 navigation satellites will launch on Delta IV and Atlas V rockets from Cape Canaveral.

Two top secret NRO satellites are set to launch on a Delta IV and Atlas in April and August from Vandenberg.

An Air Force Orbital Test Vehicle (OTV) space plane may launch as soon as May atop an Atlas V from Cape Canaveral.

The MUOS-4 liftoff is set for August on another Atlas from the Cape.

The Morelos 3 communications satellite for the Mexican Ministry of Communications and Transportation is due to launch in October from the Cape.

In November, the Atlas V will be pressed into service for the first time to launch the Orbital Sciences Cygnus Orb-4 cargo vehicle to the International Space Station (ISS) as a replacement rocket for the Orbital Sciences Antares rocket which is grounded following its catastrophic Oct. 28 explosion on the Orb-3 mission from NASA Wallops.

This Cygnus launched atop Antares on Jan. 9 and docked on Jan. 12   Cygnus pressurized cargo module – side view – during exclusive visit by  Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo.  Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com
This Cygnus launched atop Antares on Jan. 9, 2014. The next Cygnus Orb-4 will launch for the first time atop an Atlas V in Nov. 2015. Cygnus pressurized cargo module – side view – during exclusive visit by Ken Kremer/Universe Today to observe prelaunch processing by Orbital Sciences at NASA Wallops, VA. ISS astronauts will open this hatch to unload 2780 pounds of cargo. Docking mechanism hooks and latches to ISS at left. Credit: Ken Kremer – kenkremer.com

The Orb-4 launch also marks ULA’s first launch to the ISS. It may be followed by another Cygnus launch atop an Atlas V in 2016 as Orbital works to bring the Antares back into service.

Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com
Antares doomed descent to incendiary destruction after first stage propulsion system of Orbital Sciences’ rocket exploded moments after blastoff from NASA’s Wallops Flight Facility, VA, on Oct. 28, 2014. Credit: Ken Kremer – kenkremer.com

In another major milestone down the road, the Atlas V is being man rated since it was chosen to launch the Boeing CST-100 space taxi which NASA selected as one of two new commercial crew vehicles to launch US astronauts to the ISS as soon as 2017.

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

Drone Ship at Sea Preparing for Bold SpaceX Rocket Recovery Landing Attempt

Aiming to one day radically change the future of the rocket business, SpaceX CEO Elon Musk has a bold vision unlike any other in a historic attempt to recover and reuse rockets set for Jan. 6 with the goal of dramatically reducing the enormous costs of launching anything into space.

Towards the bold vision of rocket reusability, SpaceX dispatched the “autonomous spaceport drone ship” sailing at sea towards a point where Musk hopes it will serve as an ocean going landing platform for the first stage of his firm’s Falcon 9 rocket after it concludes its launch phase to the International Space Station (ISS).

“Drone spaceport ship heads to its hold position in the Atlantic to prepare for a rocket landing,” tweeted Musk today (Jan. 5) along with a photo of the drone ship underway (see above).

The history making and daring experimental landing is planned to take place in connection with the Tuesday, Jan. 6, liftoff of the Falcon 9 booster and Dragon cargo freighter bound for the ISS on a critical resupply mission for NASA.

No one has ever tried such a landing attempt before in the ocean says SpaceX. The company has conducted numerous successful soft landing tests on land. And several soft touchdowns on the ocean’s surface. But never before on a barge in the ocean.

The “autonomous spaceport drone ship” departed the port of Jacksonville, FL, on Saturday, heading to a point somewhere around 200 to 250 miles or so off the US East coast in a northeasterly direction coinciding with the flight path of the rocket.

SpaceX Falcon 9 first stage rocket will attempt precison landing on this autonomous spaceport drone ship soon after launch set for Dec. 19, 2014 from Cape Canaveral, Florida.  Credit: SpaceX
SpaceX Falcon 9 first stage rocket will attempt precision landing on this autonomous spaceport drone ship soon after launch set for January 6, 2015, from Cape Canaveral, Florida. Credit: SpaceX

The SpaceX Dragon CRS-5 mission is slated to blast off at 6:20 am EST, Tuesday, Jan. 6, 2015, atop the SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Falcon 9 and Dragon have gone vertical in advance of the 6:20am ET launch on Jan. 6, 2015. Credit: SpaceX.
Falcon 9 and Dragon have gone vertical in advance of the 6:20 am ET launch on Jan. 6, 2015. Credit: SpaceX.

The absolute overriding goal of the mission is to safely deliver NASA’s contracted payload to the ISS, emphasized Hans Koenigsmann, VP of Mission Assurance, SpaceX, at a media briefing today (Jan. 5) at the Kennedy Space Center. Landing on the off shore barge is just a secondary objective of SpaceX, not NASA, he repeated several times.

The Dragon CRS-5 spacecraft is loaded with over 5108 pounds (2317 kg) of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing, and assorted research gear for the six person crew serving aboard the ISS.

Koenigsmann estimated the odds of success at the landing attempt at about 50% at best according to an estimate from Musk himself.

“It’s an experiment. There’s a certain likelihood that this will not work out right, that something will go wrong.”

The two stage Falcon 9 and Dragon stands 207.8 feet (63.3 meters) tall and is 12 feet in diameter. The first stage is powered by nine Merlin 1D engines that generate 1.3 million pounds of thrust at sea level and rises to 1.5 million pounds of thrust as the Falcon 9 climbs out of the atmosphere, according to a SpaceX fact sheet.

The first stage Merlins will fire for three minutes until the planned engine shutdown and main engine cutoff known as MECO, said Koenigsmann.

The rocket will be in space at an altitude of over 100 miles zooming upwards at 1300 m/s (nearly 1 mi/s).

Then, a single Merlin 1D will be commanded to re-fire for three separate times to stabilize and lower the rocket during the barge landing attempt.

Four hypersonic grid fins had been added to the first stage and placed in an X-wing configuration. They will be deployed only during the reentry attempt and will be used to roll, pitch, and yaw the rocket in concert with gamboling of the engines.

It will take about nine minutes from launch until the first stage reaches the barge, said Koenigsmann. That’s about the same time it takes for Dragon to reach orbit.

He added that, depending on the internet connectivity, SpaceX may or may not know the outcome in real time.

Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5.   Credit: SpaceX/Elon Musk
Testing operation of Falcon 9 hypersonic grid fins (x-wing config) launching on next Falcon 9 flight, CRS-5. Credit: SpaceX/Elon Musk

Here’s a description from SpaceX:

“To help stabilize the stage and to reduce its speed, SpaceX relights the engines for a series of three burns. The first burn—the boostback burn—adjusts the impact point of the vehicle and is followed by the supersonic retro propulsion burn that, along with the drag of the atmosphere, slows the vehicle’s speed from 1300 m/s to about 250 m/s. The final burn is the landing burn, during which the legs deploy and the vehicle’s speed is further.”

“To complicate matters further, the landing site is limited in size and not entirely stationary. The autonomous spaceport drone ship is 300 by 100 feet, with wings that extend its width to 170 feet. While that may sound huge at first, to a Falcon 9 first stage coming from space, it seems very small. The legspan of the Falcon 9 first stage is about 70 feet and while the ship is equipped with powerful thrusters to help it stay in place, it is not actually anchored, so finding the bullseye becomes particularly tricky. During previous attempts, we could only expect a landing accuracy of within 10km. For this attempt, we’re targeting a landing accuracy of within 10 meters.”

SpaceX founder and CEO Elon Musk briefs reporters including Universe Today in Cocoa Beach, FL prior to SpaceX Falcon 9 rocket blastoff with SES-8 communications satellite on Dec 3, 2013 from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com
SpaceX founder and CEO, Elon Musk, briefs reporters, including Universe Today, in Cocoa Beach, FL, prior to a previous SpaceX Falcon 9 rocket blastoff from Cape Canaveral, FL. Credit: Ken Kremer/kenkremer.com

CRS-5 marks the company’s fifth resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the station during a dozen Dragon cargo spacecraft flights through 2016 under NASA’s Commercial Resupply Services (CRS) contract.

The cargo delivery is the entire point of the CRS-5 mission.

The official CRS-5 Mission Patch
The official CRS-5 Mission Patch

The weather odds have improved to 70% GO from 60% GO reported Major Perry Sweat, 45th Weather Squadron rep, USAF, at the briefing today at the Kennedy Space Center.

Following the catastrophic failure of the Orbital Sciences Antares rocket and Cygnus cargo freighter on Oct. 28 from NASA’s Wallops Flight Facility in Virginia, Antares launches are on hold.

Therefore the US supply train to the ISS is now wholly dependent on SpaceX.

NASA Television live launch coverage begins at 5 a.m. EST on Jan. 6 at: http://www.nasa.gov/multimedia/nasatv/

SpaceX also will webcast the launch at: http://www.spacex.com/webcast/

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo.  Credit: Ken Kremer – kenkremer.com
A SpaceX Falcon 9 rocket and Dragon cargo ship are set to liftoff on a resupply mission to the International Space Station (ISS) from launch pad 40 at Cape Canaveral, Florida on Jan. 6, 2015. File photo. Credit: Ken Kremer – kenkremer.com

NASA and SpaceX targeting Dec. 19 for next Space Station Launch

NASA and SpaceX are now targeting Dec. 19 as the launch date for the next unmanned cargo run to the International Space Station (ISS) under NASA’s Commercial Resupply Services contract.

The fifth SpaceX cargo mission was postponed from Dec. 16 to Dec. 19 to “allow SpaceX to take extra time to ensure they do everything possible on the ground to prepare for a successful launch,” according to a statement from NASA.

The Dragon spacecraft will launch atop a SpaceX Falcon 9 rocket from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida.

Both the Falcon 9 rocket and its Dragon spacecraft are in good health, according to NASA.

The mission dubbed SpaceX CRS-5 is slated for liftoff at 1:20 p.m.

An on time liftoff will result in a rendezvous with the ISS on Sunday. The crew would grapple the Dragon with the stations 57 foot long robotic arm at about 6 a.m.

The SpaceX Dragon capsule is snared by the International Space Station's Canadarm 2. Credit: NASA
The SpaceX Dragon capsule is snared by the International Space Station’s Canadarm 2. Credit: NASA

US astronaut and station commander Barry Wilmore will operate the Canadarm2 to capture the SpaceX Dragon when it arrives Sunday morning. ESA astronaut Samantha Cristoforetti will assist Wilmore working at a robotics workstation inside the domed Cupola module during the commercial craft’s approach and rendezvous.

The unmanned cargo freighter is loaded with more than 3,700 pounds of scientific experiments, technology demonstrations, crew supplies, spare parts, food, water, clothing and assorted research gear.

The Dragon research experiments will support over 256 science and research investigations for the six person space station crews on Expeditions 42 and 43.

Among the payloads is the Cloud-Aerosol Transport System (CATS), a remote-sensing laser instrument to measure clouds and the location and distribution of pollution, dust, smoke, and other particulates and aerosols in the atmosphere.

A secondary objective of SpaceX is to attempt to recover the Falcon 9 first stage on an off shore barge.

The SpaceX CRS-4 mission to the ISS concluded with a successful splashdown on Oct 25 after a month long stay.

The SpaceX CRS-5 launch is the first cargo launch to the ISS since the doomed Orbital Sciences Antares/Cygnus launch ended in catastrophe on Oct. 28.

With Antares launches on indefinite hold, the US supply train to the ISS is now wholly dependent on SpaceX.

Orbital Sciences has now contracted United Launch Alliance (ULA) to launch the firms Cygnus cargo freighter to the ISS by late 2015 on an Atlas V rocket.

Cat 4 Hurricane Gonzalo Threatens Bermuda and Delays Antares Launch to Space Station

Hurricane Gonzalo, the first major Atlantic Ocean basin hurricane in three years, has strengthened to a dangerous Category 4 storm, threatening Bermuda and forcing a postponement of the upcoming launch of the Orbital Sciences Antares rocket to the space station from the Virginia shore to no earlier than Oct. 27.

A hurricane warning is in effect for the entire island of Bermuda.

NASA and Orbital Sciences had no choice but to delay the Antares blastoff from Oct. 24 to no earlier than Oct. 27 because Bermuda is home to an “essential tracking site” that must be operational to ensure public safety in case of a launch emergency situation.

Antares had been slated for an early evening liftoff with the Cygnus cargo carrier on the Orb-3 mission to the International Space Station (ISS).

NASA and Orbital issued the following statement:

“Due to the impending arrival of Hurricane Gonzalo on the island of Bermuda, where an essential tracking site used to ensure public safety during Antares launches is located, the previously announced “no earlier than” (NET) launch date of October 24 for the Orb-3 CRS mission to the International Space Station for NASA is no longer feasible.”

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft prior to blast off on July 13 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission bound for the International Space Station. Credit: Ken Kremer – kenkremer.com

The powerful Gonzalo is currently expected to make a direct hit on Bermuda on Friday afternoon, Oct. 17. It’s packing devastating maximum sustained winds exceeding 145 mph (225 kph).

NASA and NOAA satellites including the Terra, Aqua and GOES-East satellites are providing continuous coverage of Hurricane Gonzalo as it moves toward Bermuda, according to a NASA update today.

The ISS-RapidScat payload tracking ocean winds, that was just attached to the exterior of the ISS, is also designed to help with hurricane monitoring and forecasting.

Tropical storm force winds and 20 to 30 foot wave heights are expected to impact Bermuda throughout Friday and continue through Saturday and into Sunday.

“The National Hurricane Center expects hurricane-force winds, and rainfall totals of 3 to 6 inches in Bermuda. A storm surge with coastal flooding can be expected in Bermuda, with large and destructive waves along the coast. In addition, life-threatening surf and riptide conditions are likely in the Virgin Islands, Puerto Rico, Dominican Republic, Bahamas. Those dangerous conditions are expected along the U.S. East Coast and Bermuda today, Oct. 16,” according to NASA.

On Oct. 15 at 15:30 UTC (11:30 a.m. EDT) NASA's Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Credit: NASA Goddard MODIS Rapid Response Team
On Oct. 15 at 15:30 UTC (11:30 a.m. EDT) NASA’s Terra satellite captured this image of Hurricane Gonzalo in the Atlantic Ocean. Credit: NASA Goddard MODIS Rapid Response Team

After the hurricane passes, a team will be sent to assess the impact of the storm on Bermuda and the tracking station. Further delays are possible if Bermuda’s essential infrastructure systems are damaged, such as power, transportation and communications.

The Antares/Cygnus rocket and cargo ship launch from the Mid-Atlantic Regional Spaceport at NASA’s Wallops Flight Facility along the eastrn shore of Virginia.

Liftoff is currently target for October 27 at 6:44 p.m. (EDT). The rendezvous and berthing of Cygnus with the ISS remains on November 2, with grapple of the spacecraft by the station’s robotic arm at approximately 4:58 a.m. (EST), according to a NASA update.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Ken Kremer

Cygnus Commercial Resupply Ship ‘Janice Voss’ Berths to Space Station on 45th Apollo 11 Anniversary

Following a nearly three day journey, an Orbital Sciences Corp. Cygnus commercial cargo freighter carrying a ton and a half of science experiments and supplies for the six person crew was successfully installed onto the International Space Station at 8:53 a.m. EDT this morning, July 16, after a flawless arrival and being firmly grasped by station astronauts deftly maneuvering the Canadarm2 robotic arm some two hours earlier.

Cygnus was captured in open space at 6:36 a.m. EDT by Commander Steve Swanson as he maneuvered the 57-foot (17-meter) Canadarm2 from a robotics workstation inside the station’s seven windowed domed Cupola, after it was delicately flown on an approach vector using GPS and LIDAR lasers to within about 32 feet (10 meters) of the massive orbiting complex.

Swanson was assisted by ESA astronaut and fellow Expedition 40 crew member Alexander Gerst working at a hardware control panel.

“Grapple confirmed” radioed Houston Mission Control as the complex soared in low orbit above Earth at 17500 MPH.

“Cygnus is captured as the ISS flew 260 miles (400 km) over northern Libya.”

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

Cygnus by the book arrival at the million pound orbiting laboratory coincided with the 45th anniversary of the launch of Apollo 11 on July 16, 1969 on America’s first manned moon landing mission.

This mission dubbed Orbital-2, or Orb-2, marks the second of eight operational cargo resupply missions to the ISS under Orbital’s Commercial Resupply Services (CRS) contract with NASA.

The supplies are critical to keep the station flying and humming with research investigations.

Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer.  Credit: Ken Kremer - kenkremer.com
Up-close side view of payload fairing protecting Cygnus cargo module during launch for Orb-2 mission to ISS. Vehicle undergoes prelaunch processing at NASA Wallops during visit by Universe Today/Ken Kremer. Credit: Ken Kremer – kenkremer.com

The supply ship thrusters all worked perfectly normal during rendezvous and docking to station with streaming gorgeous views provided by the stations new high definition HDEV cameras.

“We now have a seventh crew member. Janice Voss is now part of Expedition 40,” radioed Swanson.

“Janice devoted her life to space and accomplished many wonderful things at NASA and Orbital Sciences, including five shuttle missions. And today, Janice’s legacy in space continues. Welcome aboard the ISS, Janice.”

The Cygnus spacecraft was christened “SS Janice Voss” in honor of Janice Voss who flew five shuttle missions during her prolific astronaut carrier, worked for both NASA and Orbital Sciences and passed away in February 2012.

Orbital Sciences' Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2  grappling and berthing.  Credit: NASA TV
Orbital Sciences’ Cygnus cargo craft approaches the ISS on July 16, 2014 prior to Canadarm2 grappling and berthing. Credit: NASA TV

A robotics officer at Mission Control in Houston then remotely commanded the arm to move Cygnus into place for its berthing at the Earth-facing port on the Harmony module.

Once Cygnus was in place at the ready to latch (RTF) position, NASA astronaut and Flight Engineer Reid Wiseman monitored the Common Berthing Mechanism operations and initiated the first and second stage capture of the cargo ship to insure the craft was firmly joined.

The hard mate was completed at 8:53 a.m. EDT as the complex was flying about 260 miles over the east coast of Australia. 16 bolts were driven to firmly hold Cygnus in place to the station.

“Cygnus is now bolted to the ISS while flying 260 miles about the continent of Australia,” confirmed Houston Mission Control.

Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13  2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station.  Credit: Ken Kremer - kenkremer.com
Orbital Sciences Corporation Antares rocket and Cygnus spacecraft blasts off on July 13, 2014 from Launch Pad 0A at NASA Wallops Flight Facility , VA, on the Orb-2 mission and loaded with over 3000 pounds of science experiments and supplies for the crew aboard the International Space Station. Credit: Ken Kremer – kenkremer.com

Cygnus roared to orbit during a spectacular blastoff on July 13 atop an Orbital Sciences Corp. Antares rocket on the Orb-2 mission at 12:52 p.m. (EDT) from the beachside Pad 0A at the Mid-Atlantic Regional Spaceport on NASA’s Wallops Flight Facility on the Eastern Shore of Virginia.

The US/Italian built pressurized Cygnus cargo freighter delivered 1,657 kg (3653 lbs) of cargo to the ISS Expedition 40 crew including over 700 pounds (300 kg) of science experiments and instruments, crew supplies, food, water, computer equipment, spacewalk tools and student research experiments.

Student Space Flight teams at NASA Wallops.  Science experiments from these students representing 15 middle and high schools across  America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP).  Credit: Ken Kremer - kenkremer.com
Student Space Flight teams at NASA Wallops
Science experiments from these students representing 15 middle and high schools across America were selected to fly aboard the Orbital Sciences Cygnus Orb-2 spacecraft which launched to the ISS from NASA Wallops, VA, on July 13, 2014, as part of the Student Spaceflight Experiments Program (SSEP). Credit: Ken Kremer – kenkremer.com

The crew will begin work today to remove the Centerline Berthing Camera System that provided the teams with a view of berthing operations through the hatch window.

Swanson will then pressurize and outfit the vestibule area between Harmony and Cygnus. After conducting leak checks they will open the hatch to Cygnus either later today or tomorrow and begin the unloading process, including retrieving a stash of highly desired fresh food.

The wide ranging science cargo and experiments includes a flock of 28 Earth imaging nanosatellites and deployers, student science experiments and small cubesat prototypes that may one day fly to Mars.

“Every flight is critical,” said Frank Culbertson, Orbital’s executive vice president of the advanced programs group, at a post launch briefing at NASA Wallops. Culbertson was a NASA shuttle commander and also flew aboard the International Space Station (ISS).

“We carry a variety of types of cargo on-board, which includes food and basic supplies for the crew, and also the research.”

The cargo mission was crucial since the crew supply margin would have turned uncomfortably narrow by the Fall of 2014.

Cygnus will remain attached to the station approximately 30 days until August 15.

For the destructive and fiery return to Earth, the crew will load Cygnus with approximately 1,340 kg (2950 lbs) of trash for disposal upon atmospheric reentry over the Pacific Ocean approximately five days later after undocking.

The Orb-2 launch was postponed about a month from June 9 to conduct a thorough re-inspection of the two Russian built and US modified Aerojet AJ26 engines that power the rocket’s first stage after a test failure of a different engine on May 22 at NASA’s Stennis Space Center in Mississippi resulted in extensive damage.

The July 13 liftoff marked the fourth successful launch of the 132 foot tall Antares in the past 15 months, Culbertson noted.

The first Antares was launched from NASA Wallops in April 2013. And the Orb-2 mission also marks the third deployment of Cygnus in less than a year.

Orbital Sciences was awarded a $1.9 Billion supply contract by NASA to deliver 20,000 kilograms (44,000 pounds) of research experiments, crew provisions, spare parts and hardware for 8 flights to the ISS through 2016 under the Commercial Resupply Services (CRS) initiative.

Stay tuned here for Ken’s continuing ISS, OCO-2, GPM, Curiosity, Opportunity, Orion, SpaceX, Boeing, Orbital Sciences, MAVEN, MOM, Mars and more Earth & Planetary science and human spaceflight news.

Ken Kremer

Dangling Dextre Digs out Docked Dragon Depot prior to Station Departure

To close out their final week aboard the International Space Station, three of the six Expedition 39 crew members are completing their unloading tasks inside the docked commercial SpaceX Dragon cargo freighter and other duties while teams at Mission Control in Houston conduct delicate robotics work outside with dazzling maneuvers of the Dextre robot to remove the last external experiment from the vessels storage truck.

See a dazzling gallery of photos of Dextre dangling outside the docked Dragon depot – above and below.

On Monday, May 5, the robotics team at NASA Mission Control Center at the Johnson Space Center in Houston carefully guided Canada’s Dextre robotic “handyman” attached to the end of the 57-foot long Canadarm2 to basically dig out the final payload item housed in the unpressurized trunk section at the rear of the SpaceX Dragon cargo vessel docked to the ISS.

Dextre stands for “Special Purpose Dexterous Manipulator” and was contributed to the station by the Canadian Space Agency. It measures 12 feet tall and is outfitted with a pair of arms and an array of finely detailed tools to carry out intricate and complex tasks that would otherwise require spacewalking astronauts.

The Canadarm2 with Dextre in its grasp conducts external cargo transfers from the SpaceX Dragon resupply ship.  Credit: NASA TV
The Canadarm2 with Dextre in its grasp conducts external cargo transfers from the SpaceX Dragon resupply ship. Credit: NASA TV

The massive orbiting outpost was soaring some 225 miles above the home planet as Dextre’s work was in progress to remove the Optical PAyload for Lasercomm Science, or OPALS, from the Dragon’s truck.

The next step is to install OPALS on the Express Logistics Carrier-1 (ELC-1) depot at the end of the station’s port truss on Wednesday.

Monday’s attempt was the second try at grappling OPALS. The initial attempt last Thursday “was unsuccessful due to a problem gripping the payload’s grapple fixture with the Special Purpose Dextrous Manipulator, or Dextre,” NASA reported.

A software patch solved the problem.

Canada’s Dextre manipulator attached to Canadarm2 conducts external cargo transfers from the SpaceX Dragon resupply ship.  Credit: NASA TV
Canada’s Dextre manipulator attached to Canadarm2 conducts external cargo transfers from the SpaceX Dragon resupply ship. Credit: NASA TV

Dragon thundered to orbit atop SpaceX’s powerful new Falcon 9 v1.1 rocket on April 18, from Cape Canaveral, Fla.

This unmanned Dragon delivered about 4600 pounds of cargo to the ISS including over 150 science experiments, a pair of hi tech legs for Robonaut 2, a high definition Earth observing imaging camera suite (HDEV), the laser optical communications experiment (OPALS), the VEGGIE lettuce growing experiment as well as essential gear, spare parts, crew provisions, food, clothing and supplies to the six person crews living and working aboard in low Earth orbit, under NASA’s Commercial Resupply Services (CRS) contract.

OPALS uses laser light instead of radio waves to beam back precisely guided data packages to ground stations. The use of lasers should greatly increase the amount of information transmitted over the same period of time, says NASA.

The science experiments carried aboard Dragon are intended for research to be conducted by the crews of ISS Expeditions 39 and 40.

Robotics teams had already pulled out the other payload item from the truck, namely the HDEV imaging suite. It is already transmitting back breathtaking real time video views of Earth from a quartet of video cameras pointing in different directions mounted on the stations exterior.

The SpaceX CRS-3 mission marks the company’s third resupply mission to the ISS under a $1.6 Billion contract with NASA to deliver 20,000 kg (44,000 pounds) of cargo to the ISS during a dozen Dragon cargo spacecraft flights through 2016.

After spending six months in space, Station Commander Koichi Wakata from Japan as well as NASA astronaut Rick Mastracchio and Russian cosmonaut Mikhail Tyurin will be departing the station in a week aboard their Soyuz TMA-11M spacecraft on May 13 at 6:33 p.m. EDT.

They are scheduled to land some 3.5 hours later in the steppes of Kazakhstan at 9:57 p.m. (7:57 a.m. Kazakh time on May 14). The events will be carried live on NASA TV.

SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014.   Credit:  Jeff Seibert/Wired4Space
SpaceX Falcon 9 rocket and Dragon resupply ship launch from the Cape Canaveral Air Force Station in Florida on April 18, 2014. Credit: Jeff Seibert/Wired4Space
To prepare for the journey home, the trio also completed fit checks on their Russian Sokol launch and entry suits on Monday.

Meanwhile Dragon is also set to depart the station soon on May 18 for a parachute assisted splashdown and recovery by boats in the Pacific Ocean west of Baja California.

Dragon has been docked to the station since arriving on Easter Sunday morning, April 20.

It was grappled using Canadarm 2 and berthed at the Earth facing port of the Harmony module by Commander Wakata and flight engineer Mastracchio while working at the robotics work station inside the seven windowed domed Cupola module.

For the return trip, the Expedition 39 crew is also loading Dragon with precious science samples collected over many months from the crews research activities as well as trash and no longer needed items.

Stay tuned here for Ken’s continuing SpaceX, Orbital Sciences, commercial space, Orion, Chang’e-3, LADEE, Curiosity, Mars rover, MAVEN, MOM and more planetary and human spaceflight news.

Ken Kremer