Messier 53 – the NGC 5024 Globular Cluster

Messier 53, as imaged by the Hubble Space Telescope. Credit: ESA/Hubble & NASA

Welcome back to Messier Monday! In our ongoing tribute to the great Tammy Plotner, we take a look at globular cluster known as Messier 53!

During the 18th century, famed French astronomer Charles Messier noted the presence of several “nebulous objects” in the night sky. Having originally mistaken them for comets, he began compiling a list of these objects so others would not make the same mistake he did. In time, this list (known as the Messier Catalog) would come to include 100 of the most fabulous objects in the night sky.

One of these objects is Messier 53, a globular cluster located in the northern Coma Berenices constellation. Located about 58,000 light years from the Solar System, it is almost equidistant from Galactic Center (about 60,000 light years). As Messier Objects go, it is relatively easy to find since it lies in the same area of the sky as Arcturus, the fourth brightest star in the night sky.


Heading towards us at a speed of 112 kilometers per second, globular cluster M53 is one of the furthest distant globular clusters in our Milky Way halo and lay almost equally distant between our solar system and the galactic center. This 220 light year diameter ball of stars in tightly compacted towards its core – where low metal is the name of the game and RR Lyra type variable stars once ruled. But recent studies have found that there are some new kids on the block. The blue stragglers…

Messier 53, as imaged by the Hubble Space Telescope. Credit: ESA/Hubble & NASA

According to G. Beccari (et al) the population of these definitely appears to violate standard theories of stellar evolution. And there not just a few blues… There’s a whole host of them. As Beccari noted in a 2008 study:

“We used a proper combination of high-resolution and wide-field multiwavelength observations collected at three different telescopes (HST, LBT, and CFHT) to probe the blue straggler star (BSS) population in the globular cluster M53. Almost 200 BSSs have been identified over the entire cluster extension. We have also used this database to construct the radial star density profile of the cluster; this is the most extended and accurate radial profile ever published for this cluster, including detailed star counts in the very inner region. A deviation from the model is noted in the most external region of the cluster. This feature needs to be further investigated in order to address the possible presence of a tidal tail in this cluster.”

Is this possible? Then take a closer look into this research. One where a millisecond pulsar was discovered inside. As S.R. Kulkarni (et al) indicated in a 1991 study:

“Millisecond pulsars are conventionally assumed to be spun up through the action of binary companions, although some subsequently lose their companions and appear as isolated pulsars. Such objects should therefore be more numerous in dense stellar systems. We report here the surprising discovery of two pulsars in low-density globular clusters: one is a single 10-ms pulsar (1639+36) in M13 (NGC 6205), the other a 33-ms pulsar (1310+18) in a 256-d binary in M53 (NGC 5024). Their ages, inferred from their luminosities and constraints on their period derivatives, seem to be 10 9 years, significantly greater than previously reported ages ( ! 10 8 years) of cluster pulsars. The implied birth rate is inconsistent with the conventional two-body tidal capture model, suggesting that an alternative mechanism such as tidal capture between primordial binaries and a reservoir of (hundreds of) primordial neutron stars may dominate the production of tidal binaries in such clusters. The period derivative of PSR1639+36 is surprisingly small, and may be corrupted by acceleration due to the mean gravitational potential of the cluster.”

The Messier 53 globular star cluster. Credit: Ole Nielsen

History of Observation:

This globular cluster was first discovered on February 3, 1775 by Johann Elert Bode, but independently recovered on February 26, 1777 by Charles Messier who writes:

“Nebula without stars discovered below & near Coma Berenices, a little distant from the star 42 in that constellation, according to Flamsteed. This nebula is round and conspicuous. The Comet of 1779 was compared directly with this nebula, & M. Messier has reported it on the chart of that comet, which will be included in the volume of the Academy for 1779. Observed again April 13, 1781: It resembles the nebula which is below Lepus [M79].”

Sir William Herschel would revisit M53, but he did not publish his findings when studying Messier objects. Very seldom did Herschel wax poetic in his writings, but of this particular object he said: “A cluster of very close stars; one of the most beautiful objects I remember to have seen in the heavens. The cluster appears under the form of a solid ball, consisting of small stars, quite compressed into one blaze of light, with a great number of loose ones surrounding it, and distinctly visible in the general mass.”

He would return again in later years to include in his notes: “From what has been said it is obvious that here the exertion of a clustering power has brought the accumulation and artificial construction of these wonderful celestial objects to the highest degree of mysterious perfection.”

The Messier 53 globular cluster. Credit: NASA/ESA/Hubble

Although it did not touch Sir John Herschel quite so much, M53 also engaged Admiral Smyth who wrote:

“A globular cluster, between Berenice’s tresses and the Virgin’s left hand, with a coarse pair of telescopic stars in the sf [south following, SE] quadrant, and a single one in the sp [south preceding, SW]. This is a brilliant mass of minute stars, from the 11th to the 15th magnitude, and from thence to gleams of star-dust, with stragglers to the np [north preceding, NW], and pretty diffused edges. From the blaze at the centre, it is evidently a highly compressed ball of stars, whose law of aggregation into so dense and compact a mass, is utterly hidden from our imperfect senses. It was enrolled by Messier in 1774 as No. 53, and resolved into stars by Sir W. Herschel. The contemplation of so beautiful an object, cannot but set imagination to work, though the mind may be soon lost in astonishment at the stellar dispositions of the great Creator and Maintainer. Thus, in reasoning by analogy, these compressed globes of stars confound conjecture as to the models in which the mutual attractions are prevented from causing the universal destruction of their system. Sir John Herschel thinks, that no pressure can be propagated through a cluster of discrete stars; whence it would follow, that the permanence of its form must be maintained in a way totally different from that which our reasoning suggest. Before quitting this interesting ball of innumerable worlds, I may mention that it was examined by Sir John Herschel, with Mr. Baily, in the 20-foot reflector; and that powerful instrument showed the cluster with curved appendages of stars, like the short claws of a crab running out from the main body. A line through Delta and Epsilon Virginis, northward, meeting another drawn from Arcturus to Eta Bootis, unite upon this wonderful assemblage; or it is also easily found by its being about 1 deg northeast of 42 Comae Berenices, the alignment of which is already given.”

Locating Messier 53:

M53 can be easily found just about a degree northeast of 42 Alpha Comae Berenices, a visual binary star. To located Alpha, draw a mental line from Arcturus via Eta Bootis where you’ll see it about a fist width west. Alternately you can starhop from Gamma Viginis to Delta and on to Epsilon where you can locate M53 approximately 4 fingerwidths to the north/northeast.

To see this small globular cluster in binoculars will require dark skies and it will appear very small, like a large, out of focus star. In small telescopes it will appear almost cometary – and thus why Messier cataloged these objects! However, with telescopes approaching the 6″ range, resolution will begin and larger telescopes will shatter this gorgeous globular cluster. Requires dark skies.

The location of Messier 53 in the northern Coma Berenices constellation. Credit: IAU and Sky & Telescope magazine (Roger Sinnott & Rick Fienberg)

A ball of worlds… What a unique description! May you enjoy your observations as well!

And here are the quick facts on this Messier Object to help you get started!

Object Name: Messier 53
Alternative Designations: M53, NGC 5024
Object Type: Class V Globular Cluster
Constellation: Coma Berenices
Right Ascension: 13 : 12.9 (h:m)
Declination: +18 : 10 (deg:m)
Distance: 58.0 (kly)
Visual Brightness: 7.6 (mag)
Apparent Dimension: 13.0 (arc min)

We have written many interesting articles about Messier Objects here at Universe Today. Here’s Tammy Plotner’s Introduction to the Messier Objects, , M1 – The Crab Nebula, M8 – The Lagoon Nebula, and David Dickison’s articles on the 2013 and 2014 Messier Marathons.

Be to sure to check out our complete Messier Catalog. And for more information, check out the SEDS Messier Database.


Challenge Yourself! See an Astronomical Event that Only Happens Once Every 26 Years

This artist’s impression shows an eclipsing binary star system. Credit: ESO/L. Calçada.

Update: It’s off. This past weekend, the AAVSO issued Special Notice #395 calling off the campaign to observe Alpha Comae Berenices this month due to “position measurements published a century ago (which) contained errors that affected the predictions for the time of eclipse…”

And the mystery of Alpha Comae Berenices continues. Oh well. Such is the wiles and whims of the universe, and the exciting field of variable star observing!

A truly fascinating event may be in the offing this month.

Picture two distant burning embers (candles, light bulbs, LEDs, what have you) circling each other in the distance. From our far-flung vantage point, the two points of light are too faint to resolve individually, but as they pass in front of each other, a telltale dip in combined brightness occurs as one blocks out the other.

Welcome to the fascinating world of eclipsing binary stars. This week, we’d like to turn our attention towards a special star in the constellation of Coma Berenices which may — or may not — put on such a dimming act later this month.

Starry Night
An Alpha Comae Berenices (Diadem) finder chart, with comparison stars and magnitudes, decimals omitted. Credit: Starry Night Education Software.

The brightest star in the constellation Coma Berenices, Alpha (sometimes referred to as Diadem, or the ‘crown’ of Queen Berenice) shines at an apparent magnitude of +4.3. Located 63 light years distant, the system consists of two +5th magnitude F-type stars each about 3 times more luminous than our Sun locked in a 26 year orbital embrace. The physical separation of the pair is about 10 astronomical units: place Alpha Comae Berenices in our solar system, and the pair would fit nicely between the Sun and Saturn.

The orbital plane of the pair is inclined nearly along our line of sight as seen from the Earth, and it’s long been thought that catching a grazing or central eclipse of the pair might just be possible. No eclipse was recorded last time ‘round back in February 1989, but times have changed lots in observational astronomy. Today, there are enough backyard observers armed with dedicated observatories and rigs that’d be the envy of a small university that documenting such an eclipse might just be possible. In fact, a central eclipse might just dim the star by 0.8 magnitudes, and should be noticeable to the naked eye.

The binary nature of Alpha Comae Berenices was first noted by F. G. W. Struve in 1827, and the split is a challenging one during the best of years with a maximum angular separation of just 0.7 arc seconds. The pair also has a third faint +10th magnitude companion located about 89 arc seconds away.

A simplified diagram depicting an eclipsing binary event along our line of sight. Created by the author.

The American Association of Variable Star Observers (AAVSO) has an Alert Notice calling for sky watchers worldwide to monitor the star. We also understand the orbit of Alpha Comae Berenices much better in 2015 than back in 1989, and the suspected eclipse should occur somewhere between January 22nd and January 28th and may last anywhere from 28 to 45 hours. This lingering ambiguity means that having a dedicated team of observers worldwide may well be key to nabbing this eclipse.

Alpha Comae Berenices rising. Photo by the author.

The Navy Precision Optical Interferometer (NPOI) has already begun refining measurements of the brightness of the star last month, and professional facilities, to include the Fairborn Observatory atop Mt Hopkins in Arizona and the CHARA (the Center for High Angular Resolution Astronomy) Array at Mount Wilson Observatory in southern California will also be monitoring the event.

Sky and Telescope magazine also has an excellent article in their January 2015 issue on the prospects for catching this eclipse.

Looking eastward past local midnight. Credit: Stellarium.

In late January, the constellation of Coma Berenices rises high to the northeast just after local midnight.  It’s worth noting that, if the eclipsing binary nature of Alpha Comae Berenices is confirmed, it would be the longest period known, beating out 14.6 year Gamma Persei discovered in 1990 by more than a decade. A system with as wide a separation as Alpha Comae Berenices would have about a 1 in 1,200 chance in eclipsing along our line of sight due to random chance.

Note: Epsilon Aurigae does have a comparable 27 year period involving a debris disk surrounding its host star. Thanks to sharp-eyed reader Dr. John Barentine for pointing this out!

Of course, the universe does provide us with lots of near misses, allowing for an ‘occasional Diadem’ to indeed occur. Most famous eclipsing variables, such as Algol or Beta Lyrae have periods measured over the span of days or hours. Incidentally, these also make great ‘practice stars’ to test your skills as a visual athlete leading up to the big event next week. A skilled visual observer can note a change as slight as a 0.1 of a magnitude, and it’s a good idea to begin familiarizing yourself with the environs of the star now. The Coma Cluster of galaxies, the globular cluster M53, and the galactic plane crossing intruder Arcturus all lie nearby.

Credit: NASA/Spitzer.
The Coma Cluster as seen by Spitzer Space Telescope and the Sloan Digital Sky Survey. Credit: NASA/Spitzer.

Why study eclipsing binaries? Well, said fleeting mutual events when coupled with spectroscopic measurements and determinations of parallax can tell us a good deal about the astrophysical nature of the stars involved. Eclipsing binary stars have even been used to back up standard candle measurements over extragalactic distances. And of course, orbiting observatories such as Kepler and TESS (to be launched in 2017) look for transiting exoplanets using virtually the same method.

Credit: Brad Timerson.
Have a scope+DSLR? Then you can make refined measurements of eclipsing variable stars. Credit: Brad Timerson/IOTA.

But beyond its practical application, we just think that it’s plain cool that you can actually see something out beyond our solar system changing in the span of just a few days or hours.

Observers also still carry out visual observations of variable stars, just like those pipe-smoking, pocket watch carrying astronomers of yore. This involves merely comparing the target star to nearby stars of the same brightness. If you have a DSLR or a CCD rig plus a telescope, the AAVSO also has instructions for how to monitor a star’s brightness as well. No pocket watch required.

A homemade interferometer used to measure the separation of close double stars.
A homemade ‘card interferometer’ used to measure the separation of close double stars. Photo by author.

Unless, of course, you want to carry a pocket watch just for good luck. Don’t let the cold January winters keep you from joining the hunt. Let’s make some astrophysical history!



The Coma Berenices Constellation

The northern constellation known as Coma Berenices. Credit and Copyright: © 2003 Torsten Bronger.

Welcome back to Constellation Friday! Today, in honor of the late and great Tammy Plotner, we will be dealing with “Berenice’s Hair” – the Coma Berenices constellation!

In the 2nd century CE, Greek-Egyptian astronomer Claudius Ptolemaeus (aka. Ptolemy) compiled a list of all the then-known 48 constellations. This treatise, known as the Almagest, would be used by medieval European and Islamic scholars for over a thousand years to come, effectively becoming astrological and astronomical canon until the early Modern Age.

One of these is the constellation Coma Berenices, an ancient constellation located in the norther skies. In the Almagest, Ptolemy considered the asterism to be part of the constellation Leo. Today, it is one of the 88 constellations recognized by the International Astronomical Union, and is bordered by the constellations of Canes Venatici, Ursa Major, Leo, Virgo and Boötes.

Name and Meaning:

In mythology, it is easy to see why this dim collection of stars was once associated with Leo and considered to be the tuft of hair at the end of the Lion’s tail. However, as the years passed, a charming legend grew around this sparkling group of stars. Since the time of Ptolemy, this grouping of stars was recognized and although he didn’t list it as one of his 88 constellations, he did refer to is as “Berenice’s Hair”.

Coma Berenices as seen by the naked eye. Credit: Till Credner/

As legend would have it, the good Queen Berenice II of Egypt offered to sacrifice her beautiful long hair to Aphrodite for the safe return of her husband from battle. When she cut off her locks and placed it on the altar and returned the next day, her sacrifice was gone. To save his life, the court astronomer proclaimed Aphrodite had immortalized Berenice’s gift in the stars… and thus the Lion lost his tail and the astronomer saved his hide!

History of Observation:

Like many of the 48 constellations recognized by Ptolemy, Coma Berenices traces it routes back to ancient Mesopotamia. To Babylonian astronomers, it was known as Hegala, which translated to “which is before it”. However, the first recorded mention comes from Conon of Samos, the 3rd century BCE court astronomer to Ptolemy III Euergetes – the Greek-Egyptian king. It was named in honor of his consort, Berenice II, who is said to have cut off her long hair as a sacrifice to ensure the safety of the king.

The constellation was named “bostrukhon Berenikes” in Greek, which translates in Latin to “Coma Berenices” (or “Berenice’s hair”). Though it was previously designated as its own constellation, Ptolemy considered it part of Leo in his 2nd century CE tract the Almagest, where he called it “Plokamos” (Greek for “braid”). The constellation was also recognized by many non-western cultures.

In Chinese astronomy, the stars making up Coma Berenices belonged to two different areas – the Supreme Palace Enclosure and the Azure Dragon of the East. Eighteen of the constellation’s stars were in an area known as Lang wei (“seat of the general”). To Arabic astronomers, Coma Berenices was known as Al-Du’aba, Al Dafira and Al-Hulba, forming the tuft of the constellation Leo (consistent with Ptolemy’s designation).

Fragment of Mercator’s 1551 celestial globe, showing Coma Berenices. Credit: Harvard Map Collection

By the 16th century, the constellation began to be featured on globes and maps produced by famed cartographers and astronomers. In 1602, Tycho Brahe recognized it as its own constellation and included it in his star catalogue. In the following year, it was included in Johann Bayer’s famed celestial map, Uranometria. In 1920, it was included by the IAU in the list of the 88 modern constellations.

Notable Objects:

Despite being rather dim, Coma Berenices is significant because it contains the location of the North Galactic Pole. It is comprised of only 3 main stars, but contains 44 Bayer/Flamsteed designated members. Of its main stars, Alpha Comae Berenices (aka. Diadem) is the second-brightest in the constellation.

The name is derived from the Greek word diádema, which means “band” or “fillet”, and represents the gem in Queen Berenice’s crown. It is sometimes known by its other traditional name, Al-Zafirah, which is Arabic for “the braid”. It is a binary star composed of two main sequence F5V stars that are at a distance of 63 light years from Earth.

The Black Eye Galaxy (Messier 64). Credit: NASA/The Hubble Heritage Team (AURA, STScI)

It’s brightest star, Beta Comae Berenices, is located 29.78 light years from Earth and is a main sequence dwarf that is similar to our Sun (though larger and brighter). It’s third major star, Gamma Comae Berenices, is a giant star belonging to the spectral class K1II and located about 170 light years from Earth.

Coma Berenices is also home to several Deep Sky Objects, which include spiral galaxy Messier 64. Also known as the Black Eye Galaxy (Sleeping Beauty Galaxy and Evil Eye Galaxy), this galaxy is located approximately 24 million light years from Earth. This galaxy has a bright nucleus and a dark band of dust in front of it, hence the nicknames.

Then there is the Needle Galaxy, which lies directly above the North Galactic Pole and was discovered by Sir William Herschel in 1785. It is one of the most famous galaxies in the sky that can be viewed edge-on. It lies at a distance of about 42.7 million light years from Earth and is believed to be a barred spiral galaxy from its appearance.

Coma Berenices is also home to two prominent galaxy clusters. These includes the Coma Cluster, which is made up of about 1000 large galaxies and 30,000 smaller ones that are located between 230 and 300 million light years from Earth. South of the Coma Cluster is the northern part of the Virgo Cluster, which is located roughly 60 million light years from Earth.

The globular cluster Messier 53 (NGC 5024), located in the Coma Berenices constellation. Credit: NASA (Wikisky)

Other Messier Objects include M53, a globular cluster located approximately 58,000 light years away; Messier 100, a grand design spiral galaxy that is one of the brightest members of the Virgo cluster (located 55 million light years away); and Messier 88 and 99 – a spiral galaxy and unbarred spiral galaxy that are 47 million and 50.2 million light years distant, respectively.

Finding Coma Berenices:

Coma Berenices is best visible at latitudes between +90° and -70° during culmination in the month of May. There is one meteor shower associated with the constellation of Coma Berenices – the Coma Berenicid Meteor shower which peaks on or near January 18 of each year. Its fall rate is very slow – only one or two per hour on average, but these are among the fastest meteors known with speeds of up to 65 kilometers per second!

For both binoculars and telescopes, Coma Berenices is a wonderland of objects to be enjoyed. Turn your attention first to the brightest of all its stars – Beta Coma Berenices. Positioned about 30 light years from Earth and very similar to our own Sun, Beta is one of the few stars for which we have a measured solar activity period – 16.6 years – and may have a secondary activity cycle of 9.6 years.

Now look at slightly dimmer Alpha. Its name is Diadem – the Crown. Here we have a binary star of equal magnitudes located about 65 light years from our solar system, but it’s seen nearly “edge-on” from the Earth. This means the two stars appear to move back-and-forth in a straight line with a maximum separation of only 0.7 arcsec and will require a large aperture telescope with good resolving power to pull them apart. If you do manage, you’re separating two components that are about the distance of Saturn from the Sun!

The location of the northern constellation Coma Berenices. Credit: IAU/Sky&Telescope magazine

Another interesting aspect about singular stars in Coma Berenices is that there are over 200 variable stars in the constellation. While most of them are very obscure and don’t go through radical changes, there is one called FK Comae Berenices which is a prototype of its class. It is believed that the variability of FK Com stars is caused by large, cool spots on the rotating surfaces of the stars – mega sunspots! If you’d like to keep track of a variable star that has notable changes, try FS Comae Berenices (RA 13 3 56 Dec +22 53 2). It is a semi-regular variable that varies between 5.3m and 6.1 magnitude over a period of 58 days.

For your eyes, binoculars or a rich field telescope, be sure to take in the massive open cluster Melotte 111. This spangly cloud of stars is usually the asterism we refer to as the “Queen’s Hair” and the area is fascinating in binoculars. Covering almost 5 full degrees of sky, it’s larger than most binocular fields, but wasn’t recognized as a true physical stellar association until studied by R.J. Trumpler in 1938.

Located about 288 light years from our Earth, Melotte 111 is neither approaching nor receding… unusual – but true. At around 400 million years old, you won’t find any stars dimmer than 10.5 magnitude here. Why? Chances are the cluster’s low mass couldn’t prevent them from escaping long ago…

Now turn your attention towards rich globular cluster, Messier 53. Achievable in both binoculars and small telescopes, M53 is easily found about a degree northwest Alpha Comae. At 60,000 light years away from the galactic center, it’s one of the furthest globular clusters away from where it should be. It was first discovered by Johann Bode in 1755, and once you glimpse its compact core you’ll be anxious to try to resolve it.

The Needle Galaxy (NGC 4565). Credit: ESO

With a large telescope, you’ll notice about a degree further to the east another globular cluster – NGC 5053 – which is also about the same physical distance away. If you study this pair, you’ll notice a distinct difference in concentrations. The two are very much physically related to one another, yet the densities are radically different!

Staying with binoculars and small telescopes, try your hand at Messier 64 – the “Blackeye Galaxy”. You’ll find it located about one degree east/northeast of 35 Comae. While it will be nothing more than a hazy patch in binoculars, smaller telescopes will easily reveal the signature dustlane that makes M64 resemble its nickname. It is one of the brightest spiral galaxies visible from the Milky Way and the dark dust lane was first described by Sir William Herschel who compared it to a “Black Eye.”

Now put your telescope on Messier 100 – a beautiful example of a grand-design spiral galaxy, and one of the brightest galaxies in the Virgo Cluster. This one is very much like our own Milky Way galaxy and tilted face-on, so we may examine the spiral galaxy structure. Look for two well resolved spiral arms where young, hot and massive stars formed recently from density perturbations caused by interactions with neighboring galaxies. Under good observing conditions, inner spiral structure can even be seen!

Try lenticular galaxy Messier 85. In larger telescopes you will also see it accompanied by small barred spiral NGC 4394 as well. Both galaxies are receding at about 700 km/sec, and they may form a physical galaxy pair. How about Messier 88? It’s also one of the brighter spiral galaxies in the Virgo galaxy cluster and in a larger telescope it looks very similar to the Andromeda galaxy – only smaller.

How about barred spiral galaxy M91? It’s one of the faintest of the Messier Catalog Objects. Although it is difficult in a smaller telescope, its central bar is very strong in larger aperture. Care to try Messier 98? It is a grand edge-on galaxy and may or may not be a true member of the Virgo group. Perhaps spiral galaxy Messier 99 is more to your liking… It’s also another beautiful face-on presentation with grand spiral arms and a sweeping design that will keep you at the eyepiece all night!

There are other myriad open clusters and just as many galaxies waiting to be explored in Coma Berenices! It’s a fine region. Grab a good star chart and put a pot of coffee on to brew. Comb the Queen’s Hair for every last star. She’s worth it.

We have written many interesting articles about the constellation here at Universe Today. Here is What Are The Constellations?What Is The Zodiac?, and Zodiac Signs And Their Dates.

Be sure to check out The Messier Catalog while you’re at it!

For more information, check out the IAUs list of Constellations, and the Students for the Exploration and Development of Space page on Canes Venatici and Constellation Families.