OSIRIS-REx’s Final Haul: 121.6 Grams from Asteroid Bennu

These eight sample trays contain the final material from asteroid Bennu. The dust and rocks were poured into the trays from the top plate of the Touch-and-Go Sample Acquisition Mechanism (TAGSAM) head. 51.2 grams were collected from this pour, bringing the final mass of asteroid sample to 121.6 grams. Credit: NASA/Erika Blumenfeld & Joseph Aebersold

After several months of meticulous, careful work, NASA has the final total for their haul of asteroidal material from the OSIRIS-REx mission to Bennu. The highly successful mission successfully collected 121.6 grams, or almost 4.3 ounces, of rock and dust. It won’t be long before scientists get their hands on these samples and start analyzing them.

Continue reading “OSIRIS-REx’s Final Haul: 121.6 Grams from Asteroid Bennu”

Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More

Astronomers have used JWST to study the environments around 30 young protostars and found a vast collection of icy organic molecules. A recent survey identified methane, sulfur dioxide, ethanol, formaldehyde, formic acid, and many more. Image Credit: NASA/ESA/STScI

In the quest to understand how and where life might arise in the galaxy, astronomers search for its building blocks. Complex Organic Molecules (COMs) are some of those blocks, and they include things like formaldehyde and acetic acid, among many others. The JWST has found some of these COMs around young protostars. What does this tell astronomers?

Continue reading “Webb Finds Icy Complex Organic Molecules Around Protostars: Ethanol, Methane, Formaldehyde, Formic Acid and Much More”

Wow. JWST Just Found Methane in an Exoplanet Atmosphere

This artist’s rendering shows the warm exoplanet WASP-80 b. When viewed with human eyes, the colour may appear bluish due to the lack of high-altitude clouds and the presence of atmospheric methane identified by NASA’s James Webb Space Telescope. That makes it similar to the planets Uranus and Neptune in our own solar system. Image credit: NASA.

If there’s one chemical that causes excitement in the search for biosignatures on other worlds, it’s methane. It’s not a slam dunk because it has both biotic and abiotic sources. But finding it in an exoplanet’s atmosphere means that planet deserves a closer look.

Continue reading “Wow. JWST Just Found Methane in an Exoplanet Atmosphere”

A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal

The JWST has the power to see the most ancient galaxies in the Universe, as shown in this image of its first deep field. Now, astrophysicists have found carbon in one of these ancient galaxies. Image Credit: NASA, ESA, CSA, and STScI

Astrophysicists working with the JWST have found a surprising amount of metal in a galaxy only 350 million years after the Big Bang. How does that fit in with our understanding of the Universe?

Continue reading “A Galaxy Only 350 Million Years Old Had Surprising Amounts of Metal”

Is it Life, or is it Volcanoes?

This artist's illustration shows an exoplanet with active volcanoes. But from a great distance we can't see the volcanoes, only the effect they have on their atmospheres, and that can muddy the waters when it comes to biosignatures. Image Credit: NASA’s Goddard Space Flight Center/Chris Smith (KRBwyle)

Astronomers are working hard to understand biosignatures and how they indicate life’s presence on an exoplanet. But each planet we encounter is a unique puzzle. When it comes to planetary atmospheres, carbon is a big piece of the puzzle because it has a powerful effect on climate and biogeochemistry. If scientists can figure out how and where a planet’s carbon comes from and how it behaves in the atmosphere, they’ve made progress in solving the puzzle.

But one of the problems with carbon in exoplanet atmospheres is that it can send mixed signals.

Continue reading “Is it Life, or is it Volcanoes?”

How Do Lava Worlds Become Earth-Like, Living Planets?

This is an artist's illustration of Kepler-10 b, a suspected magma ocean planet about 560 light years away. Image Credit: NASA/Kepler Mission/Dana Berry

Earth was once entirely molten. Planetary scientists call this phase in a planet’s evolution a magma ocean, and Earth may have had more than one magma ocean phase. Earth cooled and, over 4.5 billion years, became the vibrant, life-supporting world it is today.

Can the same thing happen to exo-lava worlds? Can studying them shed light on Earth’s transition?

Continue reading “How Do Lava Worlds Become Earth-Like, Living Planets?”

The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability

This reprocessed colour view of Jupiter’s moon Europa was made from images taken by NASA's Galileo spacecraft in the late 1990s. Credit: NASA/JPL-Caltech

Most planets and moons in the Solar System are clearly dead and totally unsuitable for life. Earth is the only exception. But there are a few worlds where there are intriguing possibilities of life.

Chief among them is Jupiter’s moon Europa, and the JWST just discovered carbon there. That makes the moon and its subsurface ocean an even more desirable target in the search for life.

Continue reading “The JWST Just Found Carbon on Europa, Boosting the Moon’s Potential Habitability”

Engineers Want to Make Methanol by Pulling Carbon Right Out of the Air

Researchers at Western Virginia University are working on a method of extracting carbon out of exhausted air from office buildings and using it to make methanol. Image Credit: WVU Illustration/Savanna Leech

Methanol is one of our most extensively used raw materials. It’s used as a solvent, a pesticide, and in combination with other chemicals in the manufacture of plastic, clothing, plywood, and in pharmaceuticals and agrochemicals.

It’s also used as a fuel.

Continue reading “Engineers Want to Make Methanol by Pulling Carbon Right Out of the Air”

Geoengineering is Shockingly Inexpensive

Geoengineering isn't a quick fix for our climate crisis, and it's also expensive. Image Credit: University of Leeds

Despite decades of warnings and international climate agreements, global carbon emissions are still rising. Carbon emissions seem like an unstoppable juggernaut as energy-hungry humans keep breeding and pursuing more affluent lifestyles. Reducing emissions won’t be enough to confront the climate crisis; we need additional solutions.

Geoengineering, also called climate engineering, could be the solution we seek. But is it financially feasible?

Continue reading “Geoengineering is Shockingly Inexpensive”

JWST Sees Organic Molecules Ludicrously Far Away

Astronomers using the Webb telescope discovered evidence of complex organic molecules in a galaxy more than 12 billion light-years away. In this false-color Webb image, the foreground galaxy is shown in blue, while the background galaxy is red. The organic molecules are highlighted in orange. Graphic courtesy J. Spilker / S. Doyle, NASA, ESA, CSA

When astronomers used the JWST to look at a galaxy more than 12 billion light years away, they were also looking back in time. And when they found organic molecules in that distant galaxy, they found them in the early Universe.

The organic molecules are usually found where stars are forming, but in this case, they’re not.

Continue reading “JWST Sees Organic Molecules Ludicrously Far Away”