Hundreds of Massive Stars Have Simply Disappeared

This artist’s impression shows a possible seed for the formation of a supermassive black hole. Two of these possible seeds were discovered by an Italian team, using three space telescopes: the NASA Chandra X-ray Observatory, the NASA/ESA Hubble Space Telescope, and the NASA Spitzer Space Telescope.

The lifecycle of a star is regularly articulated as formation taking place inside vast clouds of gas and dust and then ending either as a planetary nebula or supernova explosion. In the last 70 years however, there seems to be a number of massive stars that are just disappearing! According to stellar evolution models, they should be exploding as supernova but instead, they just seem to vanish. A team of researchers have studied the behaviour of star VFTS 243 – a main sequence star with a black hole companion – and now believe it, like the others, have just collapsed, imploding into a black hole!

Continue reading “Hundreds of Massive Stars Have Simply Disappeared”

A Supermassive Black Hole with a Case of the Hiccups

Artist’s illustration of a small black hole orbiting a supermassive black hole, resulting in the former producing bursts of energy from the supermassive black hole’s disk of gas and dust. (Credit: Jose-Luis Olivares, MIT)

Can binary black holes, two black holes orbiting each other, influence their respective behaviors? This is what a recent study published in Science Advances hopes to address as a team of more than two dozen international researchers led by the Massachusetts Institute of Technology (MIT) investigated how a smaller black hole orbiting a supermassive black hole could alter the outbursts of the energy being emitted by the latter, essentially giving it “hiccups”. This study holds the potential to help astronomers better understand the behavior of binary black holes while producing new methods in finding more binary black holes throughout the cosmos.

Continue reading “A Supermassive Black Hole with a Case of the Hiccups”

Astronomers Find the Most Massive Pair of Supermassive Black Holes Ever Seen

Artist's illustration of binary black holes

Supermassive black holes have been found at the heart of most galaxies but understanding how they have formed has eluded astronomers for some time. One of the most popular theories suggests they merge over and over again to form larger black holes. A recent discovery may support this however the pair of supermassive black holes are orbiting 24 light years apart and measure an incredible 28 billion solar masses making it the heaviest ever seen. 

Continue reading “Astronomers Find the Most Massive Pair of Supermassive Black Holes Ever Seen”

Black Holes Warmed Up Space Slower Than Previously Thought: Study

This picture was created from images forming part of the Digitized Sky Survey 2. It shows the rich region of sky around the young open star cluster NGC 2547 in the southern constellation of Vela (The Sail). Credit: ESO/Digitized Sky Survey 2. Acknowledgement: Davide De Martin

Black holes are big influencers for the early universe; these singularities that were close to ancient stars heated up gas and affected star formation across the cosmos. A new study, however, says that heating happened later than previously thought.

“It was previously believed that the heating occurred very early, but we discovered that this standard picture delicately depends on the precise energy with which the X-rays come out,” stated Rennan Barkana, a co-author of the paper who is an astronomer at Tel Aviv University.

“Taking into account up-to-date observations of nearby black-hole binaries changes the expectations for the history of cosmic heating. It results in a new prediction of an early time (when the universe was only 400 million years old) at which the sky was uniformly filled with radio waves emitted by the hydrogen gas.”

These so-called “black-hole binaries” are star pairs where the larger star exploded into a supernova and left behind a black hole. The strong gravity then yanked gas away from the stellar companion, emitting X-rays in the process. The radiation, as it flows across the universe, is cited as the factor behind gas heating in other parts of space.

You can read more details of the model in the journal Nature. The study was led by Anastasia Fialkov, a fellow TAU researcher.