Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.

This artist’s impression illustrates a binary pair of giant stars. Despite being born from the same molecular cloud, astronomers often detect differences in binary stars’ chemical compositions and planetary systems. Image Credit: NOIRLab/NSF/AURA/J. da Silva (Spaceengine)/M. Zamani

It stands to reason that stars formed from the same cloud of material will have the same metallicity. That fact underpins some avenues of astronomical research, like the search for the Sun’s siblings. But for some binary stars, it’s not always true. Their composition can be different despite forming from the same reservoir of material, and the difference extends to their planetary systems.

New research shows that the differences can be traced back to their earliest stages of formation.

Continue reading “Binary Stars Form in the Same Nebula But Aren’t Identical. Now We Know Why.”

One in Twelve Stars Ate a Planet

When a star eats a planet, it changes the star's metallicity. New research based on co-natal stars shows that one in twelve stars have eaten at least one planet. Image Credit: International Gemini Observatory/NOIRLab/NSF/AURA/M. Garlick/M. Zamani

That stars can eat planets is axiomatic. If a small enough planet gets too close to a large enough star, the planet loses. Its fate is sealed.

New research examines how many stars eat planets. Their conclusion? One in twelve stars has consumed at least one planet.

Continue reading “One in Twelve Stars Ate a Planet”