Dream Chaser Mini-Shuttle to Fly ISS Resupply Missions on ULA Atlas V

Artist’s concept of the Sierra Nevada Corporation Dream Chaser spacecraft launching atop the United Launch Alliance Atlas V rocket in the 552 configuration on cargo missions to the International Space Station. Credit: ULA

The first two missions of the unmanned Dream Chaser mini-shuttle carrying critical cargo to the International Space Station (ISS) for NASA will fly on the most powerful version of the Atlas V rocket and start as soon as 2020, announced Sierra Nevada Corporation (SNC) and United Launch Alliance (ULA).

“We have selected United Launch Alliance’s Atlas V rocket to launch our first two Dream Chaser® spacecraft cargo missions,” said SNC of Sparks, Nevada.

Dream Chaser will launch atop the commercial Atlas V in its most powerful configuration, dubbed Atlas V 552, with five strap on solid rocket motors and a dual engine Centaur upper stage while protectively tucked inside a five meter diameter payload fairing – with wings folded.

Blast off of Dream Chaser loaded with over 5500 kilograms of cargo mass for the space station crews will take place from ULA’s seaside Space Launch Complex-41 on Cape Canaveral Air Force Station in Florida.

Sierra Nevada Corporation’s Dream Chaser spacecraft docks at the International Space Station.
Credits: Sierra Nevada Corporation

The unique lifting body design enables runway landings for Dream Chaser, similar to the NASA’s Space Shuttle at the Shuttle Landing Facility runway at NASA’s Kennedy Space Center in Florida.

The ULA Atlas V enjoys a 100% success rate. It has also been chosen by Boeing to ferry crews on piloted missions of their CST-100 Starliner astronaut space taxi to the ISS and back. The Centaur upper stage will be equipped with two RL-10 engines for both Dream Chaser and Starliner flights.

“SNC recognizes the proven reliability of the Atlas V rocket and its availability and schedule performance makes it the right choice for the first two flights of the Dream Chaser,” said Mark Sirangelo, corporate vice president of SNC’s Space Systems business area, in a statement.

“Humbled and honored by your trust in us,” tweeted ULA CEO Tory Bruno following the announcement.

Liftoff of the maiden pair of Dream Chaser cargo missions to the ISS are expected in 2020 and 2021 under the Commercial Resupply Services 2 (CRS2) contract with NASA.

Rendering of Launch of SNC’s Dream Chaser Cargo System Aboard an Atlas V Rocket. Credit: SNC

“ULA is pleased to partner with Sierra Nevada Corporation to launch its Dream Chaser cargo system to the International Space Station in less than three years,” said Gary Wentz, ULA vice president of Human and Commercial Systems.

“We recognize the importance of on time and reliable transportation of crew and cargo to Station and are honored the Atlas V was selected to continue to launch cargo resupply missions for NASA.”

By utilizing the most powerful variant of ULA’s Atlas V, Dream Chaser will be capable of transporting over 5,500 kilograms (12,000 pounds) of pressurized and unpressurized cargo mass – including science experiments, research gear, spare part, crew supplies, food, water, clothing and more per ISS mission.

“In addition, a significant amount of cargo, almost 2,000 kilograms is directly returned from the ISS to a gentle runway landing at a pinpoint location,” according to SNC.

“Dream Chaser’s all non-toxic systems design allows personnel to simply walk up to the vehicle after landing, providing immediate access to time-critical science as soon as the wheels stop.”

“ULA is an important player in the market and we appreciate their history and continued contributions to space flights and are pleased to support the aerospace community in Colorado and Alabama,” added Sirangelo.

Under the NASA CRS-2 contract awarded in 2016, Dream Chaser becomes the third ISS resupply provider, joining the current ISS commercial cargo vehicle providers, namely the Cygnus from Orbital ATK of Dulles, Virginia and the cargo Dragon from SpaceX of Hawthorne, California.

NASA decided to plus up the number of ISS commercial cargo providers from two to three for the critical task of ensuring the regular delivery of critical science, crew supplies, provisions, spare parts and assorted gear to the multinational crews living and working aboard the massive orbiting outpost.

NASA’s CRS-2 contracts run from 2019 through 2024 and specify six cargo missions for each of the three commercial providers.

By adding a new third provider, NASA simultaneously gains the benefit of additional capability and flexibility and also spreads out the risk.

Both SpaceX and Orbital ATK suffered catastrophic launch failures during ISS resupply missions, in June 2015 and October 2014 respectively, from which both firms have recovered.

Orbital ATK and SpaceX both successfully launched ISS cargo missions this year. Indeed a trio of Orbital ATK Cygnus spacecraft have already launched on the Atlas V, including the OA-7 resupply mission in April 2017.

Orbital ATK’s seventh cargo delivery flight to the International Space Station -in tribute to John Glenn- launched at 11:11 a.m. EDT April 18, 2017, on a United Launch Alliance Atlas V rocket from Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida. Credit: Ken Kremer/kenkremer.com

SpaceX has already launched a pair of resupply missions this year on the CRS-10 and CRS-11 flights in February and June 2017.

Unlike the Cygnus which burns up on reentry and Dragon which lands via parachutes, the reusable Dream Chaser is capable of low-g reentry and runway landings. This is very beneficial for sensitive scientific experiments and allows much quicker access by researchers to time critical cargo.

1st Reused SpaceX Dragon cargo craft lifts off from Launch Complex 39A at NASA’s Kennedy Space Center in Florida at 5:07 p.m. June 3, 2017 on CRS-11 mission carrying 3 tons of research equipment, cargo and supplies to the International Space Station. Credit: Ken Kremer/kenkremer.com

Dream Chaser has been under development for more than 10 years. It was originally developed as a manned vehicle and a contender for NASA’s commercial crew vehicles. When SNC lost the bid to Boeing and SpaceX in 2014, the company opted to develop this unmanned variant instead.

A full scale test version of the original Dream Chaser is currently undergoing ground tests at NASA’s Armstrong Flight Research Center in California. Approach and landing tests are planned for this fall.

Other current cargo providers to the ISS include the Russian Progress and Japanese HTV vessels.

Watch for Ken’s onsite space mission reports direct from the Kennedy Space Center and Cape Canaveral Air Force Station, Florida.

Stay tuned here for Ken’s continuing Earth and Planetary science and human spaceflight news.

Scale models of NASA’s Commercial Crew program vehicles and launchers; Boeing CST-100, Sierra Nevada Dream Chaser, SpaceX Dragon. Credit: Ken Kremer/kenkremer.com
Sierra Nevada Dream Chaser engineering test article in flight during prior captive-carry tests. Credit: NASA

Bigelow and ULA Partner to Launch Commercial Space Habitat in 2020

Interior schematic view of Bigelow Aerospace B330 expandable module. Credit: Bigelow Aerospace
 Interior schematic view of Bigelow Aerospace B330 expandable module. Credit: Bigelow Aerospace

Interior schematic view of Bigelow Aerospace B330 expandable module. Credit: Bigelow Aerospace

Bigelow Aerospace and United Launch Alliance (ULA) announced they are joining forces to develop and launch the world’s first commercial space habitat to Low Earth Orbit (LEO) by 2020 – potentially as a huge and revolutionary new addition to the International Space Station (ISS).

The expandable habitat will be based on the Bigelow Aerospace B330 module and would be carried to orbit on the most powerful version of ULA’s venerable Atlas V rocket.

Robert Bigelow, founder and president of Bigelow Aerospace, and Tory Bruno, ULA president and CEO announced the partnership on the fully commercial space habitat during a joint media briefing held at the 32nd Space Symposium in Colorado Springs, Colorado on April 11.

“We could not be more pleased than to partner with Bigelow Aerospace and reserve a launch slot on our manifest for this revolutionary mission,” said Tory Bruno, ULA president and CEO.

The B330 boasts an interior volume of 330 cubic meters (12,000 cu ft). It measures 57 feet (17.3 m) in length, weighs 20 tons and offers a design life span of 20 years.

If NASA agrees to attach the B330 to the ISS, the stations habitable volume would grow by a whopping 30% in one giant step.

“The alliance represents the first-ever commercial partnership between a launch provider and a habitat provider,” according to ULA.

The advantage of expandable habitats is that they offer a much better volume to weight ratio compared to standard rigid structures, such as all of the current ISS pressurized modules.

The station based B330 concept is named XBASE or Expandable Bigelow Advanced Station Enhancement.

Schematic of the Bigelow Aerospace B330 expandable module tucked inside the fairing of a ULA ?AtlasV? 552 rocket.  Credit: ULA
Schematic of the Bigelow Aerospace B330 expandable module tucked inside the fairing of a ULA Atlas V 552 rocket. Credit: ULA

The additional volume would enable a significant increase in the orbiting outposts ability to support research and development operations and manufacturing processes for NASA and commercial users.

Bigelow further views the B330 and follow on modules as a potential destination for space tourism and a beneficial component for human missions to the Moon and Mars.

“We are exploring options for the location of the initial B330 including discussions with NASA on the possibility of attaching it to the International Space Station (ISS),” said Robert Bigelow, founder and president of Bigelow Aerospace.

“In that configuration, the B330 will enlarge the station’s volume by 30% and function as a multipurpose testbed in support of NASA’s exploration goals as well as provide significant commercial opportunities. The working name for this module is XBASE or Expandable Bigelow Advanced Station Enhancement.”

Bigelow said his firm plans to build two B330 modules by 2020.

The B330 would be tucked inside the cavernous payload fairing of the Atlas V which would launch in the 552 configuration with 5 meter diameter fairing with 5 solid rocket booster attached to the first stage and a dual engine Centaur second stage.

Launch of Bigelow B330 expandable habitat module tucked inside ULA Atlas V payload fairing. Credit: ULA
Launch of Bigelow B330 expandable habitat module tucked inside ULA Atlas V payload fairing. Credit: ULA

“When looking for a vehicle to launch our large, unique spacecraft, ULA provides a heritage of solid mission success, schedule certainty and a cost effective solution,” says Bigelow.

The SpaceX falcon 9 fairing is not big enough to house the B330.

“SpaceX, they do not have the capability with the fairing size that is necessary to accommodate the B330. So that is not even a choice,” Bigelow stated.

The B330 partnership announcement follows hot on the heels of last weeks successful launch of Bigelow’s experimental BEAM expandable module on a SpaceX Falcon 9 rocket on a mission to the ISS on April 8.

The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station.  Credits: Bigelow Aerospace, LLC
The Bigelow Expandable Activity Module (BEAM) is an experimental expandable capsule that attaches to the space station. Credits: Bigelow Aerospace, LLC

BEAM is tucked inside the rear truck section of the SpaceX Dragon now berthed at the station. It will soon be attached to a side port on the Harmony module.

“This innovative and game-changing advance will dramatically increase opportunities for space research in fields like materials, medicine and biology,” said Bruno.

“It enables destinations in space for countries, corporations and even individuals far beyond what is available today, effectively democratizing space. We can’t begin to imagine the future potential of affordable real estate in space.”

The B330 could also function as a free flyer but would work best at the station, Bigelow noted at the briefing.

Both of the commercial space taxis being developed under NASA’s commercial crew program (CCP) could dock at the B330; the Boeing Starliner and the SpaceX crew Dragon, Bigelow stated.

Multiple B330 modules could also be joined together in orbit to form a free flying commercial space station.

United Launch Alliance Atlas V rocket – powered by Russian made RD-180 engines – and Super Secret NROL-67 intelligence gathering payload poised for launch at Space Launch Complex 41 at Cape Canaveral Air Force Station, FL, in March 2014.  Credit: Ken Kremer – kenkremer.com
File photo of Atlas V rocket in with 5 meter diameter payload fairing and 5 solid rocket boosters following rollout to Space Launch Complex 41 at Cape Canaveral Air Force Station, FL. Credit: Ken Kremer – kenkremer.com

Stay tuned here for Ken’s continuing Earth and planetary science and human spaceflight news.

Ken Kremer

………….

Learn more about SpaceX, ULA, commercial space, NASA Mars rovers, Orion, SLS, ISS, Orbital ATK, Boeing, Space Taxis, NASA missions and more at Ken’s upcoming outreach events:

Apr 17: “NASA and the Road to Mars Human Spaceflight programs”- 1:30 PM at Washington Crossing State Park, Nature Center, Titusville, NJ – http://www.state.nj.us/dep/parksandforests/parks/washcros.html