Watch the Moon Occult Aldebaran This Weekend

How about that perigee Full Moon this past weekend? Thus begins ‘Supermoon season’ for 2015, as this month’s Full Moon occurs even closer to perigee — less than an hour apart, in fact — on September 28th, with the final total lunar eclipse of the ongoing tetrad to boot. Keep an eye on Luna this week, as it crosses into the early AM sky for several key dates with destiny just prior to the start of the second and final eclipse season for 2015.

The big event later this week is a passage of the waning gibbous Moon through the Hyades open cluster on the morning of Saturday, September 5th, climaxing with a dramatic occultation of the bright star Aldebaran on the same morning. This is part of a series of 49 ongoing occultations of Aldebaran by the Moon, one for each lunation extending out to September 2018.

Image credit:
The visibility footprint for the September 5th occultation of Aldebaran by the Moon. Image credit: Occult 4.1

This weekend’s event will occur at moonrise under nighttime skies for the northeastern United States and the Canadian Maritimes, and near dawn and under daytime skies for observers in Western Europe and Northern Africa eastward. We observed an occultation of Aldebaran by the Moon under daytime skies from Alaska back in the late 1990s, and can attest that the star is indeed visible near the limb of the Moon in binoculars. A good deep blue sky is key to spotting +1 magnitude Aldebaran in the daytime.

London 711 AM
The view from London UK at 7:11 AM local. Image Credit: Starry Night Education software

During waning phase, the bright edge of the Moon is always leading, meaning Aldebaran will ingress (wink out) on the bright limb of the 52% illuminated Moon, and egress (reappear) along its dark limb.

Here are some key times for ingress/egress by location (all times quoted are local and incorporate daylight saving/summer time):

Washington D.C.

Moonrise: 11:53 PM

Ingress: N/A (before Moonrise)

Egress: 12:38 AM (altitude = 8 degrees)

Boston

Moonrise: 11:22 PM

Ingress 11:57 PM (altitude = 6 degrees)

Egress: 12:41 AM (altitude = 14 degrees)

Gander, Newfoundland

Moonrise: 11:26 PM

Ingress: 1:37 AM (altitude = 20 degrees)

Egress: 2:26 AM (altitude = 28 degrees)

London

Moonrise: 11:04 PM

Ingress: 5:50 AM (altitude = 53 degrees)

Sunrise: 6:18 AM

Egress: 7:07 AM (altitude = 54 degrees)

Paris

Moonrise: 12:02 AM

Ingress: 6:53 AM (altitude = 56 degrees)

Sunrise: 7:12 AM

Egress: 8:10 AM (altitude = 57 degrees)

Occultations of bright stars by the Moon are one of the few times besides a solar or lunar eclipse when you can actually discern the one degree per every two and half hours orbital motion of the Moon in real time. The Moon moves just a little more than its own apparent diameter as seen from the Earth every hour. This also sets us up for four more fine occultations of Aldebaran by the Moon alternating between Europe and North America on October 2nd, October 29th, November 26th, and December 23rd.

Image credit:
The final four occultations of Aldebaran by the Moon for 2015.  Image credit: Occult 4.1

The bright stars Antares, Spica and Regulus also lie along the path of the Moon, which is inclined about five degrees relative to the ecliptic. A series of occultations of Regulus by the Moon begins in late 2016.

Fun fact: The Moon used to occult the bright star Pollux in the constellation Gemini until about 2100 years ago in 117 BC. The 26,000 year cycle known as the Precession of the Equinoxes has since carried the star out of the Moon’s path.

Observations of occultations — especially dramatic grazes spied right from the edge of the path — can be used to construct a profile of the lunar limb. A step-wise ‘wink out’ of a star during an occultation can also betray the existence of a close binary.

Recording an occultation of a star by the Moon is as easy as running video while shooting the Moon. The dark limb egress of Aldebaran will be much easier to record during the September 5th event than the ingress of the star against the bright limb. I typically run video with a DLSR directly coupled to a Celestron 8” SCT telescope, with WWV radio running in the background for a precise audio timing of the event. Remember, the Moon will also be transiting the Hyades star cluster as well, covering and uncovering many fainter stars for observers worldwide around the same time frame.

Sept 5 5UT
The Last Quarter Moon versus Aldebaran and the Hyades on September 5th at ~5:00 UT. Image credit: Stellarium

Now for the ‘wow’ factor. The Moon is about 240,000 miles (400,000 km), or 1 1/4 light seconds distant. Aldebaran is 65 light years away, and said light left the star around 1950, only to have its light ‘rejected’ during the very last second by the craggy mountains along the lunar limb. And though Aldebaran appears to be a member of the Hyades, it isn’t, as the open cluster sits 153 light years from Earth.

Image credit:
The Moon crosses through the Hyades in January 2015. Image credit and copyright: Nell Ghosh

And watch that Moon, as it then heads for a partial solar eclipse as seen from South Africa and the southern Indian Ocean on September 13th, and a total lunar eclipse visible from North America and Europe on September 28th.

Expect more to come, with complete guides to both on Universe Today!

Slender Moonspotting, Occultations, Daytime Planets and More

One of nature’s grandest ‘occultations’ of all is coming right up this Friday, as the Moon passes in front of the Sun for viewers in the high Arctic for a total solar eclipse. And although 99.999+% percent of humanity will miss totality, everyone can trace the fascinating path of the Moon as it moves back into the evening sky this weekend.

As of this writing, it looks like the fickle March weather is going to keep us guessing right up to eclipse day. Fear not, as the good folks over at the Virtual Telescope Project promise to bring us views of the eclipse live.  Not only does this eclipse fall on the same day as the start of astronomical spring in the northern hemisphere known as the vernal (northward) equinox, but it also marks the start of lunation 1141.

Ever try hunting for the slender crescent Moon in the dawn or dusk sky? The sport of thin Moon-spotting on the days surrounding the New Moon can push visual skills to the very limit. Binoculars are your friend in this endeavor, as you sweep back and forth attempting to see the slim fingernail of a Moon against the low contrast background sky.  Thursday morning March 19th provides a great chance for North American observers to spy an extremely thin Moon about 24 hours prior to Friday’s eclipse.

Credit:
Projected locales for the first sightings of the slim crescent Moon on the evening of March 20th. Credit: Created by author.

Unfortunately, most of North America misses the eclipse, though folks on the extreme east coast of Newfoundland might see a partially eclipsed sunrise if the day dawns clear.

The Moon will first be picked up in the evening sky post-eclipse this weekend. On Friday evening, folks in the southern United States might just be able to spy a 15 hour old Moon with optical assistance if skies are clear.

As the Moon fattens, expect to see it at its most photogenic as Ashen light or Earthshine illuminates its nighttime side. What you’re seeing is sunlight from the Earth being reflected back in a reverse (waning gibbous) phase as seen from the earthward side of the Moon. The prominence of Earthshine can vary depending on the amount of cloud and snow cover currently turned moonward, though of course, if it’s cloudy from your location, you won’t see a thing…

Credit
The universe smiles back: A skewed emoticon grouping of Venus, Mars and the Moon plus Earthshine on February 20th. Photo by author.

Watch that Moon over the coming weeks, as it has a date with destiny.

The Moon occults (passes in front of) two planets and one bright star in the coming week. First up is an occultation of Uranus on March 21st at around 11:00 UT/7:00 AM EDT. Sure, this one is for the most part purely academic and unobservable, as it occurs over central Africa in the daytime and is only 15 degrees east of the Sun. Still, if you can pick up the Moon on the evenings of March 20th or March 21st, you might just be able to spy nearby Uranus shining at +6th magnitude nearby before it heads towards solar conjunction on April 6th.

Credit:
The visibility footprint of the March 21st occultation of Mars by the Moon. Credit: Occult 4.1.

Next, the Moon occults Mars on March 21st at 22:00 UT/6:00 PM EDT for the southern Pacific coast of South America. North America will see an extremely close photogenic pairing of Luna and the Red Planet. This is one of seven occultations of a naked eye planet by the Moon for 2015, and the first of two for Mars for the year, the next falling on December 6th.

Credit
The Moon pairs with Venus on the evening of March 22nd. Credit: Stellarium.

Next up, the Moon has a tryst with brilliant Venus, passing 2.8 degrees from the Cytherean world on March 22nd. Can you spy -4th magnitude Venus near the two day old Moon before sunset? This is the stuff that has inspired astronomically-themed flags and skewed emoticon ‘smiley face conjunctions’ of yore, including the close pairing of Mars, Venus and the Moon seen worldwide last month.

Credit:
The occultation of Aldebaran by the Moon on March 25th. Credit: Occult 4.1.

Next up, the 30% illuminated Moon occults the bright star Aldebaran for Alaskan viewers at dusk on March 25th. This is the third occultation of the star by the Moon in the ongoing cycle, and to date, no one has, to our knowledge, successfully caught an occultation of Aldebaran in 2015… could this streak be broken next week?

Credit:
The daytime Moon paired with Jupiter on March 30th. Credit: Starry Night Education software.

And speaking of daytime planet-spotting, Jupiter will sit only five degrees south of the waxing gibbous Moon on the evening of March 30th. Can you spy the giant planet near the daytime Moon in the afternoon sky using binocs? And finally, watch that Moon, as it heads for the third total lunar eclipse of the last 12 months visible from the Americas and the Pacific region on the morning of April 4th

More to come!

Luna vs. the Hyades! The 1st of 13 Occultations of Aldebaran Set For January 29th

The cosmos is continually in motion.

Be it atoms, stars or snowflakes from the latest nor’easter pounding the New England seaboard, anything worth studying involves movement. And as skies and snowbound roads clear, this Wednesday and Thursday evening will give us a reason to brave the January cold, as the waxing gibbous Moon pierces the Hyades star cluster to graze past the bright star Aldebaran.

During Thursday night’s passage, the Moon will be 78% illuminated. In a sort ‘cosmos mimics controversy’ irony, the gibbous Moon is doing its best to mimic a sky bound ‘deflategate’ football just in time for Superbowl XLIX this weekend.

Stellarium
The motion of the Moon this week across the Hyades. Credit: Stellarium.

But the January 29th event also marks the first occultation of Aldebaran for 2015.

Fun fact: At magnitude +0.8, Aldebaran is the only star brighter than +1st magnitude north of the celestial equator that the Moon can currently occult. Regulus, the runner up, shines at magnitude +1.4.  Two other second magnitude stars — Antares and Spica — lie along the Moon’s path on occasion, and up until the 2nd century BC, it was possible for the Moon to occult Pollux in the constellation Gemini as well.

There are 13 occultations of Aldebaran in 2015, and the Moon occults the star 49 times overall until the last event in the current cycle on September 3rd, 2018. Aldebaran is also occulted by the Moon more often in the current 2010-2020 decade than any other bright star. You can even spy Aldebaran near the daytime Moon with binoculars, as we did back in 1996 from North Pole, Alaska.

Credit: Occult
Maps for the 13 occultations of Aldebaran  by the Moon in 2015, click to enlarge. solid lines denote regions were the occultation occurs under dark skies. Credit: Occult 4.0.

Of course, the January 29th event is an occultation only for the high Arctic, with only a scattering of villages and distant early warning stations along the northern Nunavut coast welcoming the sequence of 2015 occultations of the bright star.

The rest of us will see a close photogenic pass, as the Moon makes an end run through the Hyades star cluster every 27.3 day sidereal lunar month in 2015. The Moon will thus occult several members of the Hyades on each pass. Our best bet for North America is the occultation of Aldebaran on November 26th, though the Moon will be just 13 hours past Full.

68 Tauri. Credit: Occult 4.0
The occultation of 68 Tauri (a member of the Hyades) for January 29th. Credit: Occult 4.0.

Why doesn’t the path of the Moon just stay put with respect to the sky? Because the orbit of our Moon is fixed at an inclination of 5.1 degrees not with respect to our equator, but to the plane of the ecliptic. This means that the Moon’s orbit is in motion as well, and can wander anywhere from declination 28.6 degrees north to south as it cycles from a shallow to steep path every 18.6 years. We’re actually in a shallow year in 2015 (known as a minor lunar standstill) after which the apparent path of the Moon through the sky begins to widen again until April 2025.

An occultation is celestial motion that you can see in real time as a star or planet is photobomb’d by the onrushing Moon like a January snowplow… but those background stars are in motion as well.

The Hyades themselves — along with our own solar system — are moving around the galactic center. The nearest open cluster to us at 153 light years distant, the Hyades provided a unique object of study for 19th century astronomers. Astronomer Lewis Boss of the Dudley observatory spent several decades studying the proper motion — the apparent motion that a star seems to be moving across the sky from our solar system-bound perspective, measured in arc seconds — of the Hyades, and found the entire group was converging on a point in the constellation Orion near 6 hours 7’ right ascension and +7 degrees declination.

Starry Night
The imaginary convergent point of the Hyades in the night sky. Credit: Starry Night Education software.

Of course, this motion is relative and demonstrates a changing perspective, as the Hyades recedes from our solar system like a defensive line rushing to sack a quarterback.

OK, enough with the sports similes. The Hyades are so close that the actual Hyades Stream — often referred to as the Hyades Moving Group — is actually strewn across the constellations Orion, Taurus and Aries and more.

Some stars, such as 20 Arietis in the adjacent constellation Aries and Iota Horologii in the southern hemisphere may actually members as well. There’s always a bit of ongoing controversy when it comes to actual moving group membership, which is usually pegged by determining proper motion, coupled with the age and metallicity of prospective stars. Growing up in the Milky Way galaxy, our Sun was once a member of some unnamed ancient open cluster that has since long dispersed, like the Hyades are in the process of doing now.

Photo by author
The asterism of the Hyades and the ‘eye of the Bull.’ Photo by author.

The Hyades contains hundreds of stars and ironically, Aldebaran is not a member of the cluster, but is merely 65 light years away from us in the foreground. The V-shaped asterism of the Hyades gives the Head of Taurus the Bull its distinctive shape. The Hyades are named after the rain nymph daughters of Atlas from Greek mythology, whose half daughters the Pleiades also adorn the nearby sky.

And as an added bonus, don’t miss comet C/2014 Q2 Lovejoy crossing the constellation Triangulum, also nearby. Q2 Lovejoy reaches perihelion this week on January 30th, and although it’s completing with the evening Moon, it’s still holding out at a respectable magnitude +4.5.

Credit:
Comet Q2 Lovejoy skirts by  the Hyades and the Pleiades. Credit and Copyright: John Chumack.

All reasons to get out these chilly January evenings and ponder a hurried universe continually in motion, both fast and slow.

-Check out Q2 Lovejoy on January 30th courtesy of the Virtual Telescope project.