What is Absolute Zero?

Canadians don’t have much to be proud of, but we can regale you with our ability to withstand freezing cold temperatures. Now, I live on the West Coast, so I’m soft and weak, rarely experiencing temperatures below freezing.

But for some of my Canadian brethren, temperatures can dip down to levels your mind and body can scarcely comprehend. For example, I have a friend who lives in Winnipeg, Manitoba. For a day last winter, the temperatures there dipped down -31C, but with the windchill, it felt like -50C. On that same day, it was a balmy -29C on Mars. On Mars!

But for scientists, and the Universe, it can get much much colder. So cold, in fact, that they use a completely different temperature scale – Kelvin – to measure how far away things are from the coldest possible temperature: Absolute Zero.

Nowhere close to absolute zero. Credit: Osccarr (CC BY 2.0)
Nowhere close to absolute zero. Credit: Osccarr (CC BY 2.0)

On the Celsius scale, Absolute Zero is -273.15 degrees. And in Fahrenheit, it’s -459.67 degrees. In the Kelvin scale, however, it’s very simple. Absolute Zero is 0 kelvin.

At this point, a science explainer is going to stumble into a minefield of incorrect usage. It’s not 0 degrees kelvin, you don’t say the degrees part, just the kelvin part. Just kelvin.

This is because when you measure something from an arbitrary point, like the direction you just turned, you’ve changed course 15-degrees. But if you’re measuring from an absolute point, like the lowest physical temperature defined by nature, you drop the degrees because it’s an absolute. An Absolute Zero.

Of course, I’ve probably gotten that wrong too. This stuff is hard.

Anyway, back to Absolute Zero.

Still not cold enough. Credit: Lori Cuthbert (CC BY 2.0)
Still not cold enough. Credit: Lori Cuthbert (CC BY 2.0)

Absolute Zero is the coldest possible temperature that can theoretically be reached. At this point, no heat energy can be extracted from a system, no work can be done. It’s dead Jim.

But it’s completely theoretical. It’s practically impossible to cool something down to Absolute Zero. In order to cool something down, you need to do work to extract heat from it. The colder you get, the more work you need to do. In order to get to Absolute Zero, you’d need to put in an infinite amount of work. And that’s ridiculous.

As you probably learned in physics or chemistry class, the temperature of a gas translates to the motion of the particles in the gas. As you cool a gas down, by extracting heat from it, the particles slow down.

You would think, then, that by cooling something down to Absolute Zero, all particle motion in that something would stop. But that’s not true.

From a quantum mechanics point of view, you can never know the position and momentum of particles at the same time. If the particles stopped, you’d know their momentum (zero) and their position… right there. The Universe and its laws of physics just can’t allow that to happen. Thank Heisenberg’s Uncertainty Principle.

Therefore, there’s always a little motion, even if you could get to Absolute Zero, which you can’t. But you can’t extract any more heat from it.

The physicist Robert Boyle was one of the first to consider the possibility that there was a lowest possible temperature, which he called the primum frigidum. In 1702, Guillaume Amontons created a thermometer that he calculated would bottom out at -240 C. Pretty close, actually.

But it was Lord Kelvin, who created this absolute scale in 1848, starting at -273 C, or 0 kelvin.

A photograph of Lord Kelvin.
A photograph of Lord Kelvin.

By this measurement, even with its windchill, Winnipeg was a balmy 223 kelvin on that wintry day.

The surface of Pluto, on the other hand varies from a low of 33 kelvin to a high of 55 kelvin. That’s -240 C to -218 C.

The average background temperature across the entire Universe is just 2.7 kelvin. You won’t find many places that cold, unless you get out to the vast cosmic voids that separate galaxy clusters.

Over time, the background temperature of the Universe will continue to drop, but it’ll never actually reach Absolute Zero. Even in a Googol years, when the last supermassive black hole has finally evaporated, and there’s no usable heat left in the entire Universe.

In fact, astronomers call this bleak future the “heat death” of the Universe. It’s heat death, as in, the death of all heat. And happiness.

You might be surprised to know that the coldest temperature in the entire Universe is right here on Earth. Well, sometimes, anyway. And assuming the aliens haven’t got better technology than us, which they probably do.

At the time that I’m recording this video, physicists have used lasers to cool down Rubidium-87 gas to just 170 nanokelvin, a tiny fraction above Absolute Zero. In fact, they won a Nobel Prize for their work in discovering Bose-Einstein condensates.

NASA is actually working on a new experiment called the Cold Atom Lab that will send a version of this technology to the International Space Station, where it should be able to cool material down to 100 picokelvin. That’s cold.

The Cold Atom Lab is planned to launch in August 2017. Credit: NASA / JPL
The Cold Atom Lab is planned to launch in August 2017. Credit: NASA / JPL

Here are your takeaways. Absolute Zero is the coldest possible temperature than can ever be reached, the point at which no further heat energy can be extracted from a system. Never say degrees kelvin, you’ll cause so much wincing. The Universe can’t match our cold generating abilities… yet. Take that Universe.

I’d love to hear the coldest temperature you’ve ever personally experienced. For me, it was visiting Buffalo in December. That’s not right.

Will the Universe Run Out Of Energy?

It seems like the good times will go on forever, so feel free to keep on wasting energy. But entropy is patient, and eventually, it’ll make sure there’s no usable energy left in the Universe.

Thanks to the donations of generations of dinosaurs and their plant buddies, we’ve got fossils to burn. If we ever get off our dependence on those kinds of fuels, we’ll take advantage of renewable resources, like solar, wind, tidal, smug and geothermal. And if the physicists really deliver the goods, we’ll harness the power of the Sun and generate a nigh unlimited amount of fusion energy using the abundant hydrogen in all the oceans of the world. Fire up that replicator, the raktajino is on the house. Also, everything is now made of diamonds.

We’ll never run out of H+. Heck that stuff is already cluttering up our daily experience. 75% of the baryonic mass of the Universe is our little one-protoned friend. Closely followed up by helium and lithium, which we’ll gladly burn in our futuristic fusion reactors. Make no mistake, it’s all goin’ in.

It looks like the good times will never end. If we’ve energy to burn, we’ll never be able to contain our urges. Escalating off into more bizarre uses. Kilimajaro-sized ocean cruise liners catering to our most indulgent fantasies, colossal megastructure orbital laser casinos where life is cheap in the arena of sport. We’ll build bigger boards and bigger nails.or something absolutely ridiculous and decadent like artificial ski-hills in Dubai. Sadly, it’s naive to think it’s forever. Someday, quietly, those good times will end. Not soon, but in the distant distant future, all energy in the Universe will have been spent, and there won’t a spare electron to power a single LED.

Astronomers have thought long and hard about the distant future of the Universe. Once the main sequence stars have used up their hydrogen and become cold white dwarfs and even the dimmest red dwarfs have burned off their hydrogen. When the galaxies themselves can no longer make stars. After all the matter in the Universe is absorbed by black holes, or has cooled to the background temperature of the Universe.

Combining observations done with ESO's Very Large Telescope and NASA's Chandra X-ray telescope, astronomers have uncovered the most powerful pair of jets ever seen from a stellar black hole. The black hole blows a huge bubble of hot gas, 1,000 light-years across or twice as large and tens of times more powerful than the other such microquasars. The stellar black hole belongs to a binary system as pictured in this artist's impression. Credit: ESO/L. Calçada
Artist’s impression of a Star feeding a black hole. Credit: ESO/L. Calçada

Black holes themselves will evaporate, disappearing slowly over the eons until they all become pure energy. Even the last proton of matter will decay into energy and dissipate. Well, maybe. Actually, physicists aren’t really sure about that yet. Free Nobel prize if you can prove it. Just saying.

And all this time, the Universe has been expanding, spreading matter and energy apart. The mysterious dark energy has been causing the expansion of the Universe to accelerate, pushing material apart until single photons will stretch across light years of distance. This is entropy, the tendency for energy to be evenly distributed. Once everything, and I do mean all things, are the same temperature you’ve hit maximum entropy, where no further work can be done.

This is known as the heat death of the Universe. The temperature of the entire Universe will be an infinitesimal fraction of a degree above Absolute Zero. Right above the place where no further energy can be extracted from an atom and no work can be done. Terrifyingly, our Universe will be out of usable energy.

The white dwarf G29-38 (NASA)
The white dwarf G29-38 (NASA)

Interestingly, there’ll still be the same amount it started with, but it’ll be evenly distributed across all places, everywhere. This won’t happen any time soon. It’ll take trillions of years before the last stars die, and an incomprehensible amount of time before black holes evaporate. We also don’t even know if protons will actually decay at all. But heat death is our inevitable future.

There’s a glimmer of good news. The entire Universe might drop down to a new energy state. If we wait long enough, the Universe might spontaneously generate a new version of itself through quantum fluctuations. So with an infinite amount of time, who knows what might happen?

Burn up those dirty dinosaurs while you can! Enjoy the light from the Sun, and the sweet whirring power from your counter-top Mr. Fusion reactor. Your distant descendants will be jealous of your wasteful use of energy, non-smothering climate and access to coffee and chocolate, as they huddle around the fading heat from the last black holes, hoping for a new universe to appear.

What’s the most extreme use of energy you can imagine? Tell us in the comments below.