This Week’s Penumbral Lunar Eclipse and the Astronomy of Columbus

(Photo by Author)

You can always count on an eclipse to get you out of a delicate situation. Today is Columbus Day in the United States and Thanksgiving north of the border in Canada. Later this week also marks the start of the second eclipse season for 2013. Today, we thought we’d take a look at the circumstances for the first eclipse of the season kicking off this coming Friday night, October 18, as well as the fascinating role that eclipses played in the life and times of Christopher Columbus.

Friday’s event is a penumbral lunar eclipse, meaning that the Full Moon will only pass through the outer bright rim of the Earth’s shadow. Such events are subtle affairs, as opposed to total and partial lunar eclipses, which occur when the Moon enters the dark inner core, or umbra, of the Earth’s shadow. Still, you may just be able to notice a slight dusky shading on the lower southern limb of the Moon as it flirts with the umbra, barely missing it around the time of central eclipse at 23:51 Universal Time/ 7:51 PM Eastern Daylight Saving Time. Friday night’s penumbral is 3 hours and 59 minutes in duration, and 76.5% of the disk of the Moon will be immersed in the penumbra at maximum eclipse.

The visibility footprint and circumstances of this week’s penumbral lunar eclipse. (Credit: Fred Espenak/NASA/GSFC).

Key Events occurring on Friday, October 18th:

21:50UT/5:50PM EDT: 1st contact with the Earth’s shadow.

23:51UT/7:51PM EDT: Mid-eclipse.

01:49UT(Oct 19th)/9:49PM EDT: Last contact. Eclipse ends.

The eclipse will be underway at moonrise for North and South America and occur at moonset for central Asia— Africa and Europe will see the entire eclipse. Standing on Earth’s Moon, an observer on the nearside would see a partial solar eclipse.

A simulation of Friday's lunar eclipse, looking back from Earth Moon at mid-eclipse. (Credit:
A simulation of Friday’s lunar eclipse, looking back from Moon at mid-eclipse. (Wikimedia Commons graphic in the Public Domain).

This eclipse is the 3rd and final lunar eclipse of 2013, and the 5th overall. It’s also the first in a series of four descending node eclipses, including the total lunar eclipse of October 8th next year.   It’s also the 52nd eclipse of 72 in the lunar saros series 117, which started on April 3rd, 1094 and will end with a final lunar eclipse on May 15th, 2356. Saros 117 produced its last total lunar eclipse in 1815 and its final partial in 1941.

Though penumbrals are slight events, we’ve been able to notice an appreciable difference before, during and after the eclipse photographically:

Penumbral I
Can you spy the difference? The May 18th, 2002 penumbral lunar eclipse before (left) and during mid-eclipse (right). Photos by Author.

Be sure to use identical exposure settings to catch this effect. Locations where the Moon rides high in the sky also stand the best chance of imaging the faint penumbral shading, as the Moon will be above the discoloring effects of the thicker air mass low to the horizon.

The Moon reaches descending node along the ecliptic about 20 hours after the end of the eclipse, and reaches apogee just over six days later on October 25th. The October Full Moon is also known as the Hunter’s Moon, providing a bit of extra illumination on the Fall hunt.

And this sets us up for the second eclipse of the season the next time the Moon crosses an ecliptic node, a hybrid (annular-total) solar eclipse spanning the Atlantic and Africa on November 3rd. More to come on that big ticket event soon!

In Columbus’s day, the Moon was often used to get a rough fix of a ship’s longitude at sea. Columbus was especially intrigued with the idea of using lunar eclipses to determine longitude. If you can note the position of the Moon in the sky from one location versus a known longitude during an event— such as first contact of the Moon with the Earth’s umbra during an eclipse —you can gauge your relative longitude east or west of the point. The sky moves 15 degrees, or one hour of right ascension overhead as we rotate under it. One of the earliest records of this method comes to us from Ptolemy, who deduced Alexander the Great’s position 30 degrees (2 hours) east of Carthage during the lunar eclipse of September 20th, 331 B.C. Alexander noted that the eclipse began two hours after sunset from his locale, while in Carthage it was recorded that the eclipse began at sunset.

A Jacob's crossstaff, a simple tool for measuring angles in the sky. (Photo by Author).
A Jacob’s cross staff, a simple tool for measuring angles in the sky. (Charles Towne Landing Historic Site Museum, Photo by Author).

Columbus was a student of Ptolemy, and used this method during voyages to and from the New World during the lunar eclipses of September 14th, 1494 and February 29, 1504. Of course, such a method is only approximate. The umbra of the Earth often appears ragged and indistinct on the edge of the lunar disk at the start of an eclipse, making it tough to judge the actual beginning of an eclipse by more than ten of minutes or so. And remember, you’re often watching from the pitching deck of a ship to boot!

Another problem also plagued Columbus’s navigation efforts: he favored a smaller Earth than we now know is reality. Had he listened to another Greek astronomer by the name of Eratosthenes, he would’ve gotten his measurements pretty darned close.

An eclipse also saved Columbus’s butt on one occasion. The story goes that tensions had come to a head between the locals and Columbus’s crew while stranded on the island of Jamaica in 1504. Noting that a lunar eclipse was about to occur on March 1st  (the evening of February 29th for North America), Columbus told the local leader that the Moon would rise “inflamed with wrath,” as indeed it did that night, right on schedule. Columbus then made a great show of pretending to pray for heavenly intersession, after which the Moon returned to its rightful color.  This kept a conniving Columbus and his crew stocked in supplies until a rescue ship arrived in June of that year.

A depiction of the 1504 lunar eclipse from the 1879 text Astronomie Populare by Camille Flammarion.
A depiction of the 1504 lunar eclipse from the 1879 text Astronomie Populare by Camille Flammarion.

Be sure to check out this Friday’s penumbral eclipse, and amaze your friends with the prediction of the next total lunar eclipse which occurs on U.S. Tax Day next year on April 15th, 2014. Can you do a better job of predicting your longitude than Columbus?

A Fine Pair of Lunar Occultations for North America This Weekend

Pi Sagittarii moments before it was occulted by the Moon on August 10th, 2011. (Photo by Author).

Heads up, North American residents: our Moon is about to blot out two naked eye stars on Friday and Saturday night.

Such an event is known as an occultation, an astronomical term that has its hoary roots in astronomy’s pseudoscience ancestor of astrology. An occultation is simply when one astronomical body passes in front of another from our line of sight. There’s nothing quite like watching a star disappear on the dark limb of the Moon. In a universe where events often transpire over periods of time longer than a human life span, occultations are abrupt affairs to witness.

Close double stars have also been teased out of occultation data, winking out in a quick, step-wise fashion. If an occultation such as the two this weekend occurs while the Moon is waxing towards Full, we get the added advantage of watching the action on the leading dark limb of the Moon during convenient early evening hours.

Beta Capricorni on the dark limb of the Moon Saturday night. (Created by the author using Starry Night).
Beta Capricorni on the dark limb of the Moon Saturday night. (Created by the author using Starry Night).

First up is the occultation of the +3.9th magnitude star Rho Sagittarii on Friday night, October 11th. Central conjunction for this occultation occurs at 00:40 Universal Time (UT) early on the morning of the 12th. The Moon will be at a 51% illuminated waxing gibbous phase, having passed First Quarter just prior to the start of the occultation at 7:02 PM EDT/23:02 UT on the 11th. The sunset terminator line at the start of the occultation will bisect the central U.S., and observers east of the Mississippi will get to witness the entire event. The southern graze line will cross Cuba and Guatemala. Note that the Moon will also pass its most southern declination for this lunation just two days prior on October 9th at 23:00 UT/7:00 PM EDT, at a declination of -19.6 degrees.  This is one of the Moon’s most southern journeys for 2013, meaning that it will still ride fairly far to the south in the sky during this weekend’s occultations.

The occultation of Rho Saggitarii by the Moon for the night of October 11th. (rendered using Occult 4.1.02 software).
The occultation of Rho Sagittarii by the Moon for the night of October 11th. the dashed line indicates where the occultation will occur in the daytime; east of this region, the occultation occurs after sunset. (rendered using Occult 4.1.02 software).

Rho Sagittarii is an F-type star 122 light years distant. Stick around until February 23rd, 2046, and you’ll get to see an even rarer treat, when the planet Venus occults the very same star. Just south of the Rho Sagittarii pair lies the region from which the Wow! Signal was detected in 1977.

The Moon moves at an average speed of just over a kilometre a second in its orbit about the Earth, and traverses roughly the apparent distance of its angular size of 30’ in one hour. The duration of occultations as seen from their center line take about an hour from ingress to egress, though its much tougher to watch a star reappear on the bright limb of the Moon!

And the night of Saturday, October 12th finds the 62% illuminated waxing gibbous Moon occulting an even brighter star across roughly the same region. The star is +3.1 magnitude Beta Capricorni, which also goes by the Arabic name of Dabih, meaning “the butcher.”  Dabih is also an interesting double star with a +6th magnitude component 3.5’ away from the +3rd magnitude primary. Dabih is an easy split with binoculars, and it will be fun to watch the two components pass behind the Moon Saturday night. This occultation also occurs the night of October 12th which is traditionally Fall Astronomy Day. If you’re hosting a star party this coming Saturday night, be sure to catch the well-timed occultation of Beta Capricorni! The central conjunction for this event occurs at 01:27 UT on the morning of the 13th, and North American observers east of the Rockies will get to see the entire event.

(Rendered using Occult software).
The occultation footprint of Beta Capricorni for the night of October 12th. (Rendered using Occult software).

Beta Capricorni is 328 light years distant, putting the physical separation of the B component at about a third of a light year away from the primary star at 21,000 astronomical units distant. “Beta B” thus takes about 700,000 years to orbit its primary! It’s also amazing to think that those fusion-born photons took over three centuries to get here, only to be rudely “interrupted” by the bulk of our Moon in the very last second of their journey.

And be sure to keep an eye on the primary star as it winks out, as it’s a known spectroscopic triple star with unseen companions in respective 9 and 1374 day orbits. Dabih may just appear to “hang” on the jagged lunar limb as those close companions wink out in a step-wise fashion.

Both occultations are bright enough to watch with the naked eye, although a standard set of 10x 50 binoculars will provide a fine view. The ingress of an occultation is also an excellent event to catch on video, and if you’ve got WWV radio running audio in the background, you can catch the precise time that the star disappears from your locale.

Note: WWV radio is still indeed broadcasting through the ongoing U.S. government shutdown, though they’re operated by NOAA & the NIST.

The International Occultation and Timing Association is always interested in reports of occultations carried out by amateur astronomers. Not only can this reveal or refine knowledge of close double stars, but a series of occultation observations from precisely known locations can map the profile of the lunar limb.

Be sure to catch both events this U.S. Columbus Day/Canadian Thanksgiving Day weekend, and send those pics in to Universe Today!

Precise timings for the ingress and egress of each lunar occultations for major North American cities can be found at the following pages:

– Rho Sagittarii

– Beta Capricorni

Conjunctions to Watch For in July

The waxing crescent Moon joins the evening sky early this week. (Photo by author).

The planets are slowly returning into view this month, bashfully peeking out from behind the Sun in the dawn & dusk sky. This month offers a bonanza of photogenic conjunctions, involving the Moon, planets and bright stars.

The action begins tonight on July 8th, as the waxing crescent Moon joins the planet Venus in the dusk sky. The razor thin Moon will be a challenge on Monday night, as it just passed New on the morning of the 8th at 3:14AM EDT/7:14 Universal Time (UT). The record for spotting the thin crescent with the naked eye currently stands at 15 hours and 32 minutes, completed by Stephen O’Meara on May 1990. Binoculars help considerably in this endeavor.  Wait until 15 minutes after local sunset, and then begin patiently sweeping the horizon.

Mr. Thierry Legault completed an ultimate photographic challenge earlier today, capturing the Moon at the precise moment of  New phase!

The Moon & Venus on the evening of July 9th from latitude 30 degrees north, about 30 minutes after sunset. (Created by the author using Stellarium).
The Moon & Venus on the evening of July 9th as seen from latitude 30 degrees north, about 30 minutes after sunset. (Created by the author using Stellarium).

This week  marks the start of lunation 1120. The Moon will be much easier to nab for observers worldwide on Tuesday night, July 9th for observers worldwide. The sighting of the waxing crescent Moon will also mark the start of the Muslim month of Ramadan for 2013. Due to the angle of the ecliptic in July, many northern hemisphere observers may not spot the Moon until Wednesday night on July 10th, about 6.7 degrees south west of -4.0 magnitude Venus.

Did you know? There are Guidelines for the Performance of Islamic Rites for Muslims aboard the International Space Station. It’s interesting to note that the timing of the rituals follows the point from which the astronaut originally embarked from the Earth, which is exclusively the Baikonur Cosmodrome in Kazakhstan for the foreseeable future of manned spaceflight.

Malaysia’s first astronaut, Sheikh Muszaphar Shukor observed Ramadan aboard the International Space Station in 2007.

From there, the crescent Moon fattens, meeting up with Saturn and Spica on the evenings of July 15th and 16th. The Moon will actually occult (pass in front of) the bright star Spica on the evening of July 15/16th at ~3:33UT/11:33PM EDT (on the 15th) for observers in Central America and western South America. The rest of us will see a near miss worldwide.

The waxing crescent Moon nearing Spica on the evening of the 15th at 10PM EDT. The Moon reaches 1st Quarter on the same evening at 11:18PM EDT. (Created by the author using Starry Night).
The waxing crescent Moon nearing Spica on the evening of the 15th at 10PM EDT. The Moon reaches 1st Quarter phase on the same evening at 11:18PM EDT. (Created by the author using Starry Night).

This is the 13th in a cycle of 18 occultations of Spica by our Moon spanning 2012-2013. Spica is one of four stars brighter than magnitude +1.4 that lie close enough to the ecliptic to be occulted by our Moon, the others being Antares, Regulus and Aldebaran. Saturn will lie 3 degrees from the Moon on the evening of July 16th.

Can you nab Spica and Saturn near the Moon with binoculars in the daytime around the 15th? It can be done, using the afternoon daytime Moon as a guide. Crystal clear skies (a rarity in the northern hemisphere summertime, I know) and physically blocking the Sun behind a building or hill helps.

The waxing gibbous Moon will also occult +2.8 Alpha Librae for South Africa on July 17th around 17:09UT & +4.4th magnitude Xi Ophiuchi for much of North America on the night of July 19th-20th.

And speaking of Regulus, the brightest star in the constellation Leo lies only a little over a degree (two Full Moon diameters) from Venus only the evenings of July 21st & the 22nd. 77.5 light years distant, Regulus is currently over 100 times fainter at magnitude +1.4. Can you squeeze both into the field of view of your telescope at low power? Venus’s mythical ‘moon’ Neith lives!

Venus can even occult Regulus on rare occasions, as last occurred on July 7th, 1959 and will happen next on October 1st, 2044.

But there’s morning action afoot as well. The planets Mars and Jupiter have emerged from solar conjunction on April 18th and June 19th, 2013 respectively, and can now be seen low in the dawn skies about 30 minutes before sunrise.

Mars and Jupiter in a close conjunction on the morning of July 22nd, about 30 minutes before sunrise as seen from latitude 30 degrees north. (Created by the author using Starry Night).
Mars and Jupiter in a close conjunction on the morning of July 22nd, about 30 minutes before sunrise as seen from latitude 30 degrees north. (Created by the author using Starry Night).

Mars approaches Jupiter in the dawn until the pair is only 0.79 degrees (about 48 arc minutes) apart on Monday, July 22nd. Mars shines at magnitude +1.6 and shows a tiny 3.9” disk, while Jupiter displays a 32.5” disk shining at magnitude -1.9 on this date. Conjunction occurs at about 7:00 UT/3:00 AM EDT, after which the two will begin to race apart. Mercury is visible beginning its morning apparition over 5 degrees to the lower right of the pair (see above).

Jupiter will reach opposition and reenter the evening sky on January 5th, 2014, while Mars won’t do the same until April 8th of next year. Weird factoid alert: neither Jupiter or Mars reach opposition in 2013! What effect does this have on terrestrial affairs? Absolutely none, well unless you’re a planetary imager/observer…

Mars also reaches its most northern declination of 2013 of 24 degrees in the constellation Gemini on July 16th at 7:00 AM EDT/11:00 UT.  Mars can wander as far as declination 27 degrees north, as last happened in 1993.

Finally, are you observing from southern Mexico this week and up for a true challenge? The asteroid 238 Hypatia occults a +7.4 magnitude star from 10:13-10:49 UT on July 10th in the constellation Pisces for up to 29 seconds. This event will be bright enough to watch with binoculars- check out our best prospects for asteroid occultations of stars in 2013 here and here.

Good luck, clear skies, and be sure to post those astro-pics in the Universe Today’s Flickr community!

Catch the Moon pairing with Mercury & Venus Tonight

Looking west at sunset from latitude 30 degrees north. The ecliptic and Mercury's orbit along with a 10 degree field of view outlined for reference. All graphics created by the author using Starry Night).

If you’ve never seen Mercury, this week is a great time to try.

Over the past few weeks, observers worldwide have been following the outstanding tight triple conjunction of Mercury, Venus and Jupiter low to the west at dusk.

Jupiter has exited the evening sky, headed for conjunction with the Sun on June 19th. I caught what was probably our last glimpse of Jupiter for the season clinging to the murky horizon through binoculars just last week. If you’re “Jonesin’ for Jove,” you can follow its progress this week through superior conjunction as it transits the Solar Heliospheric Observatory’s LASCO C3 camera.

This leaves the two innermost worlds of our fair solar system visible low to the west at dusk. And tonight, they’re joined by a very slender waxing crescent Moon, just over two days after New phase.

The Moon, Venus and Mercury as seen from 30 degrees north tonight at 9PM EDT.
The Moon, Venus and Mercury as seen from 30 degrees north tonight at 9PM EDT.

The evening of June 10th finds a 4% illuminated Moon passing just over 5 degrees (about 10 Full Moon diameters) south of Venus and Mercury. Venus will be the first to appear as the sky darkens, shining at magnitude -3.9 and Mercury will shine about 40 times fainter above it at magnitude +0.3.

Ashen light, also known as Earthshine will also be apparent on the darkened limb of the Moon. Another old-time term for this phenomenon is “the Old Moon in the New Moon’s Arms.” Ashen light is caused by sunlight being reflected off of the Earth and illuminating the nighttime Earthward facing portion of the Moon. Just how prominent this effect appears can vary depending on the total amount of cloud cover on the Earth’s Moonward facing side.

....and the orientation of the Moon, Mercury and Venus on the night of June 12th and ~9PM EDT.
….and the orientation of the Moon, Mercury and Venus on the night of June 12th and ~9PM EDT.

This week sets the stage for the best dusk apparition of Mercury for northern hemisphere viewers in 2013. Orbiting the Sun every 88 Earth days, we see Mercury either favorably placed east of the Sun in the dusk sky or west of the Sun in the dawn sky roughly six times a year. Mercury’s orbit is markedly elliptical, and thus not all apparitions are created the same. An elongation near perihelion, when Mercury is 46 million kilometers from the Sun, can mean its only 17.9 degrees away from the Sun as viewed from the Earth. An elongation near aphelion, 69.8 million kilometers distant, has a maximum angular separation of 27.8 degrees.

This week’s greatest elongation of 24.3 degrees occurs on June 12th. It’s not the most extreme value for 2013, but does have another factor going for it; the angle of the ecliptic. As we approach the solstice of June 21st, the plane of the solar system as traced out by the orbit of the Earth is at a favorable angle relative to the horizon. Thus, an observer from 35 degrees north latitude sees Mercury 18.4 degrees above the horizon at sunset, while an observer at a similar latitude in the southern hemisphere only sees it slightly lower at 16.9 degrees.

Venus and the Moon make great guides to locate Mercury over the next few nights. It’s said that Copernicus himself never saw Mercury with his own eyes, though this oft repeated tale is probably apocryphal.

We also get a shot at a skewed “emoticon conjunction” tonight, not quite a “smiley face” (: as occurred between Jupiter, Venus and the Moon in 2008, but more of a “? :” Stick around until February 13th, 2056 and you’ll see a much tighter version of the same thing! A time exposure of a pass of the International Space Station placed near Mercury and Venus could result in a planetary “meh” conjunction akin to a “/:” Hey, just throwing that obscure challenge out there. Sure, there’s no scientific value to such alignments, except as testimony that the universe may just have a skewed sense of humor…

Through the telescope, Venus currently shows a 10” diameter gibbous phase, while Mercury is only slightly smaller at 8” and is just under half illuminated. No detail can be discerned on either world, as a backyard telescope will give you the same blank view of both worlds that vexed astronomers for centuries. These worlds had to await the dawn of the space age to give up their secrets. NASA’s MESSENGER spacecraft entered a permanent orbit around Mercury in 2011, and continues to return some outstanding science.

Both planets are catching up to us from the far side of their orbits. Mercury will pass within 2 degrees of Venus on June 20th, making for a fine wide field view in binoculars.

And now for the wow factor of what you’re seeing tonight. The Moon just passed apogee on June 9th and is currently about 416,500 kilometers or just over one light second distant. Mercury meanwhile, is 0.86 astronomical units (A.U.), or almost 133 million kilometers, or about 7 light minutes away. Finally, Venus is currently farther away from the Earth than the Sun at 1.59 A.U.s, or about 13.7 light minutes distant.

All this makes for a great show in the dusk skies this week. And yes, lunar apogee just after New sets us up for the closest Full Moon of 2013 (aka the internet sensation known as the “Super Moon”) on June 23rd. More to come on that soon!


Jupiter and the Moon Have a Close Encounter in the Sky February 18, 2013

The January 2013 occultation of Jupiter by the Moon as seen from South America. (Image courtesy of Luis Argerich & Nightscape Photography; used with permission.

The movement of the Moon makes a fascinating study of celestial mechanics. Despite the light pollution it brings to the nighttime sky, we’re fortunate as a species to have a large solitary satellite to give us lessons in “Celestial Mechanics 101″

This weekend, we’ll get to follow that motion as the Moon crosses into the constellation Taurus for a near-pass of the planet Jupiter, and for a very few citizens of our fair world, occults it.

The Moon versus Jupiter during the previous occultation of the planet last month. (Image courtesy of Luis Argerich at Nightscape Photography; used with permission).
The Moon versus Jupiter during the previous occultation of the planet last month. (Image courtesy of Luis Argerich at Nightscape Photography; used with permission).

In astronomy, the term “occultation” simply means that one astronomical body passes in front of another. The term has its hoary roots in astronomy’s ancient past; just like the modern day science of chemistry sprung from the pseudo-science of alchemy, astronomy was once intertwined with the arcane practice of astrology, although the two have long since parted ways. When I use the term “occultation” around my non-space geek friends, (I do have a few!) I never fail to get a funny look, as if I just confirmed every wacky suspicion that they ever had about us backyard astronomers…

But those of us who follow lunar occultations never miss a chance to observe one. You’ll actually get to see the motion of the Moon as it moves against the background planet or star, covering it up abruptly. The Moon actually moves about 12° degrees across the sky per 24 hour period.

The position of the Moon & Jupiter as seen from Tampa (Feb 18th, 7PM EST), Perth, (Feb 18th 11:30UT) & London  (Feb 18th at 19UT). Created by the author using Stellarium.
The position of the Moon & Jupiter as seen from Tampa (Feb 18th, 7PM EST), Perth, (Feb 18th 11:30UT) & London (Feb 18th at 19UT). Created by the author using Stellarium.

On the evening of Monday, February 18th, the 56% illuminated waxing gibbous Moon will occult Jupiter for Tasmania and southern Australia around 12:00 Universal Time (UT). Folks along the same longitude as Australia (i.e., eastern Asia) will see a close pass of the pair. For North America, we’ll see the Moon approach Jupiter and Aldebaran of February 17th (the night of the Virtual Star Party) and the Moon appear past the pair after dusk on the 18th.

Orientation of Jupiter, the Moon & Vesta on the evening of February 18th for North America. (Created by the author in Starry Night).
Orientation of Jupiter, the Moon & Vesta on the evening of February 18th for North America. (Created by the author in Starry Night).

But fret not; you may still be able to spot Jupiter near the Moon on the 18th… in the daytime. Daytime planet-spotting is a fun feat of visual athletics, and the daytime Moon always serves as a fine guide. Jupiter is juuuuuust bright enough to see near the Moon with the unaided eye if you know exactly where to look;

Jupiter captured during a close 2012 pass in the daytime! (Photo by author).
Jupiter captured during a close 2012 pass in the daytime! (Photo by author).

To see a planet in the daytime, you’ll need a clear, blue sky. One trick we’ve used is to take an empty paper towel tube and employ it as a “1x finder” to help find our target… binoculars may also help! To date, we’ve seen Venus, Jupiter, Sirius & Mars near favorable opposition all in the daylight… Mercury and Vega should also be possible under rare and favorable conditions.

This week’s occultation of Jupiter is the 3rd and final in a series that started in December of last year. The Moon won’t occult a planet again until an occultation of Venus on September 8th later this year, and won’t occult Jupiter again until July 9th, 2016. We’re also in the midst of a long series of occultations of the bright star Spica (Alpha Virginis) in 2013, as the Moon occults it once every lunation from somewhere in the world. Four major stars brighter than +1st magnitude lie along the Moon’s path near the ecliptic; Spica, Aldebaran, Regulus, and Antares which we caught an occultation of in 2009;

Also of note: we’re approaching a “plane-crossing” of the Jovian moons next year. This means that we’ll start seeing Callisto casting shadows on the Jovian cloud tops this summer on July 20th, and it will continue until July 21st, 2016. The orbits of the Jovian moons appear edge-on to us about every five years, and never really deviate a large amount. Callisto is the only moon that can “miss” casting a shadow on the disk of Jupiter in its passage.  The actual plane crossing as seen from the Earth occurs in November 2014. Jupiter reaches solar conjunction this year on June 19th and doesn’t come back into opposition until early next year on January 5th. 2013 is an “opposition-less” year for Jupiter, which occurs on average once per every 11-12 years. (One Jovian orbit equals 11.8 Earth years).

The Moon plus Jupiter during last month's close conjunction. (Photo by author).
The Moon plus Jupiter during last month’s close conjunction. (Photo by author).

But wait, there’s more… the Moon will also occult +7.7th magnitude 4 Vesta on February 18th at~21:00 UT. This occultation occurs across South America and the southern Atlantic Ocean. It would be fun to catch its ingress behind the dark limb of the Moon, and we bet that a precisely timed video might just show evidence for Vesta’s tiny angular diameter as it winks out. For North American observers, Vesta will sit just off the northern limb of the Moon… if you have never seen it, now is a great time to try!

Finally, we realized that also in the field with 4 Vesta is an explorer that just departed its environs, NASA’s Dawn spacecraft. Although unobservable from Earth, we thought that it would be an interesting exercise to see if it gets occulted by the Moon as well this week, and in fact it does, for a very tiny slice of the planet;

The occultation of the Dawn spacecraft as seen from Earth. Created by the author using Occult 4.0.
The occultation of the Dawn spacecraft as seen from Earth. Created by the author using Occult 4.0.

Hey, calculating astronomical oddities is what we do for fun… be sure to post those pics of Jupiter, the Moon and more up to our Universe Today Flickr page & enjoy the celestial show worldwide!

See more of Luis Argerich’s astrophotography at Nightscape Photography.

Graphics created by author using Stellarium, Starry Night and Occult 4.0 software.