TRAPPIST-1 Outer Planets Likely Have Water

The TRAPPIST-1 solar system generated a swell of interest when it was observed several years ago. In 2016, astronomers using the Transiting Planets and Planetesimals Small Telescope (TRAPPIST) at La Silla Observatory in Chile detected two rocky planets orbiting the red dwarf star, which took the name TRAPPIST-1. Then, in 2017, a deeper analysis found another five rocky planets. It was …

The Giant Planets Migrated Between 60-100 Million Years After the Solar System Formed

Untangling what happened in our Solar System tens or hundreds of millions of years ago is challenging. Millions of objects of wildly different masses interacted for billions of years, seeking natural stability. But its history—including the migration of the giant planets—explains what we see today in our Solar System and maybe in other, distant solar …

Finding Atmospheres on Red Dwarf Planets Will Take Hundreds of Hours of Webb Time

The JWST is enormously powerful. One of the reasons it was launched is to examine exoplanet atmospheres to determine their chemistry, something only a powerful telescope can do. But even the JWST needs time to wield that power effectively, especially when it comes to one of exoplanet science’s most important targets: rocky worlds orbiting red …

Webb Sees a System That Just Finished Forming its Planets

When a young star begins forming, it’s spinning rapidly, surrounded by a flattened disk that grows its future planets. Once the star can ignite fusion in its core, its stellar winds kick in, clearing out the remaining gas and dust, starving its planets for material. Now, JWST has found an older star in this exact phase of the cycle, dispersing its gas into interstellar space. This limits how much larger the planets can become until no material remains.

How We Get Planets from Clumping Dust

Our gleaming Earth, brimming with liquid water and swarming with life, began as all rocky planets do: dust. Somehow, mere dust can become a life-bearing planet given enough time and the right circumstances. But there are unanswered questions about how dust forms any rocky planet, let alone one that supports life.

If Exoplanets Have Lightning, it’ll Complicate the Search for Life

Discovering exoplanets is almost routine now. We’ve found over 5,500 exoplanets, and the next step is to study their atmospheres and look for biosignatures. The James Webb Space Telescope is leading the way in that effort. But in some exoplanet atmospheres, lightning could make the JWST’s job more difficult by obscuring some potential biosignatures while …

Some Young Planets Are Flattened Smarties, not Spheres.

One of contemporary astronomy’s most pressing questions concerns planet formation. We can see more deeply than ever into very young solar systems where planets are taking shape in the disks around young stars. But our view is still clouded by all the gas and dust in these young systems. The picture of planet formation just …