Dying Stars Could Provide a Second Chance for Life

Scientists recently discovered a new frontier in the race to find life outside our solar system. Dying red giant stars may bring icy planets back from the dead. Once-frozen planets and moons may provide a new breeding ground for life as their stars enter the last, and brightest, phase of their lives. Previous ideas about the search for extra-solar life had excluded these regions.

An international team of astronomers estimates that the emergence of new life on a planet is possible within the red giant phase. “Our result indicates that searches for life-giving worlds outside our solar system should include planets around old stars,” said Dr. Bruno Lopez of the Observatoire de la Cote d’Azur, Nice, France. Lopez and his colleagues estimate that more than 150 red giant stars are close enough – within 100 light years – for upcoming or proposed missions to search for the signatures of life on distant worlds. A light year is the distance light travels in one year, almost six trillion miles!

Location, Location, Location
One of the secrets of Earth’s success in producing life is its location within the sphere of the Sun’s habitable zone. This sphere intersects the plane of the solar system to create a special donut-shaped boundary that outlines where water can exist as a liquid in our solar system, a necessity for the development of life. Get too far from the Sun – and it’s a lonely icebox. Too close – and the water evaporates into space, never to return again.

While the Earth currently sits well within this donut of life, our Sun is evolving and will one day grow to be a red giant star. Its habitable zone will expand with it, changing the locales where liquid water can splash and life may one day thrive.

In Light of the Sun, Mars May Be a Sound Investment
Lying just inside the outer limit of our Sun’s habitable zone, Mars remains a frozen world today because of its thin atmosphere. However, when the Sun becomes a red giant a few billion years from now, Mars may become the happening place to be. “Mars will be in the habitable zone for a couple billion years, so Martian life may get a second chance,” said Dr. William Danchi of NASA’s Goddard Space Flight Center, Greenbelt, Md.

In 2003, researchers monitored the amount of ice on Mars during its winter and spring seasons. In some regions, the water-ice content was more than 90% by volume. Scientists suspect that this water used to fill the planet’s now-dry lakes and seas. One day in the distant future, the frozen water on Mars may fill these dry basins again and bring forth new life in our solar system.

Red Giants Redefine the Search for Extra-Terrestrial Life
The same holds true for planets and moons as they orbit their own red giant suns. Billions of years ago, these stars were similar to our Sun. Imagine the events as they unfolded: A Sun-like star explodes into its red giant phase, growing tremendously in size and brightness. Warm rays from the star reach out to a once-frozen and dead moon. The solitary satellite’s icy top layer quickly melts into liquid water, which creeps across the surface and fills old dusty craters with warmer seas. The stage is set for the birth of new life in the moon’s now-vibrant oceans.

Currently, there are at least 150 red giant stars within 100 light years of Earth and many of them may have orbiting planets capable of supporting life. A new frontier has opened for planet-hunters around the world.

One such endeavor, NASA’s Kepler mission, hopes to discover smaller Earth-like planets outside our solar system. Looking for tiny dips in the brightness of a star when a planet crosses in front of it, researchers will observe about 100,000 stars in one small patch of sky for four years. Kepler is set for launch in 2007.

Original Source: NASA News Release

How Galaxy Collisions Lead to Starbirth

Data from ISO, the infrared observatory of the European Space Agency (ESA), have provided the first direct evidence that shock waves generated by galaxy collisions excite the gas from which new stars will form. The result also provides important clues on how the birth of the first stars was triggered and speeded up in the early Universe.

By observing our galaxy and others, scientists have long concluded that the explosion of massive stars like supernovae generates shock waves and ?winds? that travel through and excite the surrounding gas clouds. This process triggers the collapse of nearby gas that eventually leads to the birth of new stars, like a domino effect.

The signature of this process is the radiation emitted by molecular hydrogen. When hydrogen molecules are ?excited? by the energy of a nearby explosion, they emit a distinctive type of radiation that can be detected in the infrared.

This type of radiation is also observed in places where galaxies have collided with one another and the formation of new stars goes at a very high rate. So far, however, there was no clear picture of what happens in the time between the collision of two galaxies and the birth of the first new stars.

The missing link has now been found by a team of German astronomers that have analysed ISO data of the galaxy pair nicknamed the ?Antennae? (NGC 4038/4039). These two galaxies, located 60 million light-years away in the constellation ?Corvus? (the Crow), are currently at an early stage of encounter. The scientists noticed that the overlapping region of the two colliding galaxies is very rich in molecular hydrogen, which is in an excited state.

In particular, the radiation from molecular hydrogen is evenly strong in the northern and southern areas of the overlap region. Much to the team?s surprise, however, there are too few supernova explosions or regions of intense star formation there to explain the observed molecular hydrogen emission. So, the excitation of the molecular hydrogen must be the signature of that observationally rare pre-star birth phase in which hydrogen is excited by the mechanical energy produced in the collision and transported by shock waves. In other words, these results provide the first direct evidence of the missing link between gas collision and the birth of the first stars. The team estimates that when the gas will collapse to form new stars, during the next million years, the Antennae galaxy will become at least two times brighter in the infrared.

The astronomers believe that star formation induced by shocks may have played a role in the evolution of proto-galaxies in the first thousand million years of life of our Universe. Shock waves produced through the collision of proto-galaxies may have triggered the condensation process and speeded-up the birth of the very first stars. These objects, made up of only hydrogen and helium, would otherwise have taken much longer to form, since light elements such as hydrogen and helium take a long time to cool down and condense into a proto-star. Shock waves from the first cloud collisions may have been the helping hand.

Original Source: ESA News Release

Medusa Fossae Region on Mars

This image, taken by the High Resolution Stereo Camera (HRSC) on board ESA?s Mars Express spacecraft, shows part of the Medusa Fossae formation and adjacent areas at the highland-lowland boundary on Mars.

The HRSC obtained this image during orbit 917 with a resolution of approximately 13 metres per pixel. The scene shows an area located at about 5? South and 213? East.

The Medusa Fossae formation is an extensive unit of enigmatic origin found near the Martian ?highland-lowland dichotomy boundary? between the Tharsis and Elysium centres of volcanic activity. This dichotomy boundary is a narrow region separating the cratered highlands, located mostly in the southern hemisphere of Mars, from the northern hemisphere’s lowland plains.

The cratered highlands stand two to five kilometres higher than the lowland plains, so the boundary is a relatively steep slope. The processes that created and modified the dichotomy boundary remain among the major unanswered issues in Mars science.

The boundary between the old volcanic plateau region and part of the widespread deposits of the Medusa Fossae formation, called Amazonis Sulci, is shown in this image. In general, the formation appears as a smooth and gently undulating surface, but is partially wind-sculpted into ridges and grooves, as shown in the mosaic of nadir images.

It is commonly agreed that the materials forming Medusa Fossae were deposited by pyroclastic flows or similar volcanic ash falls. The plateau walls of the volcanic massif are partly covered by lava flows and crossed in places by valleys which were most likely carved by fluvial activity.

The remains of water-bearing inner channels are visible in the centre of the valleys and at the bottom of the massif. Superposition of the lobe-fronted pyroclastic flows indicates that the water erosion ended before their deposition. Later, a ?bolide? impacted near the massif and the ejecta blanket was spread as a flow over parts of the plateau, implying water or ice was present in the subsurface at the time of impact.

A bolide is any extraterrestrial body in the 1-10 kilometre size range, which impacts on a planetary surface, explodes on impact and creates a large crater. This is a generic term, used when we do not know the precise nature of the impacting body, whether it is a rocky or metallic asteroid, or an icy comet, for example.

Original Source: ESA News Release

New Milky Way Dwarf Satellite Galaxy Discovered

Large spiral galaxies such as our own Milky Way are like huge sprawling continents in space. Like any continent, such galaxies should have many smaller islands lying off the coast. Current models of galaxy formation suggest that galactic continents should have more neighboring islands than actually seen with telescopes. Now one more island has been added to the Milky Way’s contingent and this one is small enough to map well against predictions. Other dwarfs – like the one recently discovered in Ursa Major – are likely to follow.

Located 300 thousand plus light-years away in the direction of the Big Dipper, the recently discovered Ursa Major (UMa) dwarf galaxy has roughly one-tenth the surface brightness of the next smallest Milky Way dwarf (located in Sextans). Like the Sextans dwarf, the UMa dwarf is spherical in shape (galaxy type dSph) and is in some ways similar to globular clusters which are also found in association with large spiral galaxies.

According to Beth Willman of New York University – principal investigator of a team of 15 astronomers studying data returned by the Sloan Digital Sky Survey (SDSS), “Ursa Major appears to be old and metal poor, like all of the other known Milky Way dwarf spheroidal companions. However, it may be 10 times fainter than the faintest known Milky Way satellite. We are in the process of obtaining more detailed observations that will provide a more detailed picture of UMa’s properties, which we will then compare with the other known satellites.

Beth goes on to explain, “UMa was detected as part of a systematic survey for Milky Way companions. It was detected as a slight statistical fluctuation in the number of red stars in that region of the sky.”

All galaxies and globular clusters include a wide range of stellar types in their makeup. These range from young, massive, short-lived, intensely bright blue-giants, through longer-lived, modestly massive, mostly middle-aged fainter yellow stars such as our Sun, to old, moderately bright, but hugely swollen red-giants similar to Scorpio’s Antares and Orion’s Betelguese. When it comes to finding nearby dwarf galaxies – such as the UMa dwarf – it is this last group of stars that are of especial interest. Red-giants are bright enough to be detected, identified spectroscopically, and counted using automated sky-surveying telescopes such as the SDSS in New Mexico – even from small satellite galaxies located several hundreds of thousands of light years away.

Once data from SDSS is available, teams such as Beth’s can analyze it for high-concentrations of red-giants in small regions of the sky. Their presence can indicate an unsupected dwarf galaxy or a globular cluster. Spectrographic information is used by teams such as Beth’s to filter out fainter – but far closer – red stars within the Milky Way itself. Finally a more detailed view of the study can be made using higher sensitivity instruments at other observatories.

Once data showed that a UMa dwarf galaxy might exist, the 2.5 meter wide-field camera of the Isaac Newton Telescope in the Canary Islands helped determine its general appearance. Images from the Newton Telescope plus data from SDSS was combined to verify the nature of the study as a spheroidal galaxy and not simply a rogue globular cluster – such as the Intergalactic Wanderer (NGC 2419) in Lynx located at a similar distance in space.

Although smaller dwarf galaxies have absolute magnitudes similar to the brightest globular clusters, one important difference between large globulars and small dwarfs lies in their size. The UMa dwarf is roughly ten times as large as the largest globulars known. And much of its mass is likely to be non-stellar “dark matter” – while nearly all the mass in a globular cluster is packed into stars. Since it’s large, but not very luminous, the team has tagged UMa as a dwarf galaxy.

From a cosmological perspective, satellite galaxies such as the Ursa Major dSph play an important role in explaining the formation of large, intermediate, and smaller scale structure throughout the Universe. On the largest scales, spiral galaxies (such as our Milky Way and the Great Galaxy of Andromeda) are known to dwell in extended groups of galaxies called groups and clusters. Our own group (the Local Group) is small in mass and extent while its two largest members, though large by spiral galaxy standards, are quite modest in comparison to the largest galaxies known to astronomers (the giant ellipticals). The very largest scales of galactic formation in the Universe include thousands of large galaxies while our own local group has but several dozen members. On the very smallest scales, the Milky Way and its retinue, which include the two irregular Magellanic Clouds plus now ten dwarf sphericals, make up a single gravitationally bound contingent. Because of this, astronomers have an opportunity to explore the smallest possible building blocks of extragalactic structure.

In their paper entitled “A new Milky Way Dwarf Galaxy In Ursa Major” Beth and her team go on to say, “UMa was detected very close to our detection limits. Numerous other dwarfs with properties similar to or fainter than the Ursa Major dSph may thus exist around the Milky Way… it is reasonable to expect that 8-9 additional dwarfs brighter than our detection limits still remain undiscovered over the entire sky. If true, that number would preclude (galactic formation) models that do not predict the presence of many ultra-faint dwarfs.”

Written by Jeff Barbour

What’s Up This Week – Mar 28 – Apr 3, 2005

Image credit: NOAO/AURA/NSF
Monday, March 28 – This date is a very important one for Heinrich W. Olbers. It was on this night in 1802 that he discovered his second asteroid – Pallas – while observing Ceres (discovered 15 months earlier). Only five years later in 1807, Olbers discovered Vesta on this same night making it the fourth to be found.

Race ahead of the Moon tonight and head out early to view asteroid Pallas using just binoculars. At around magnitude 7, Pallas can be found tonight west of Epsilon Virginis, but telescope users are in for an exclusive treat! Using low power, locate M59 and M60 – asteroid Pallas will be in the same field of view for most observers just north of M59 and will be far brighter than any nearby star. Both the M59 and M60 are two of the most massive ellipticals in the Virgo cluster and both are roughly 60 million light years distant. Sharp-eyed observers with larger scopes will also see spiral galaxy NGC 4647 in the same lower power field, making this observation even better.

Wishing you clear skies for this event…

Tuesday, March 29 – For Southern Hemisphere viewers, try your hand at detecting Comet C/2005 A1 LINEAR while it passes near Zeta Phoenix on this universal date.

Tonight let’s use the later rise of the Moon to our advantage and head about 2 degrees northeast of star 13 in Monoceros. Our study will be NGC 2261 – more commonly known as “Hubble’s Variable Nebula”. Named for Edwin Hubble, this 10th magnitude object is not only very blue in appearance to larger apertures, but is a true enigma. Fuelling star, variable R Monoceros does not display normal stellar spectrum and may be a protoplanetary system. R is usually lost in the high surface brightness of the “comet-like” structure of the nebula, yet the nebula itself varies with no predictable timetable – perhaps due to dark masses shadowing the star. We do not even know how far away it is, because there is no detectable parallax!

Wednesday, March 30 – For observers in Hawaii, this will be your opportunity to watch the Moon occult Sigma Scorpii and Antares on this universal date. Please check this IOTA webpage for times in your area.

Our large binocular and telescope study for this evening is located roughly halfway between Sirius and Alpha Monoceros – NGC 2359. Known as “Thor’s Helmut”, this bubble-like emission nebula was blown into existence by a super-heated blue giant star in its center. The NGC 2359 spans about 30 light years and is about 15,000 light years away. The fuelling Wolf-Rayet star produces high speed stellar winds which may have interacted with a nearby molecular cloud, giving this strange nebula its curved shape. At magnitude 11, “Thor’s Helmut” is an unusual observation to add to your collection.

Thursday, March 31 – Did you miss your chance at Pallas? Then head back out tonight with the telescope as the moving asteroid will now be approximately one half degree east/southeast of the M90 for most observers. The M90’s outer arms no longer contain star-forming regions, but it’s one of the largest spiral galaxies in the Virgo cluster. Moving toward us, it is possible this galaxy has already escaped the cluster’s influence. (For those observing with large telescopes, magnify and see if you can catch 14th magnitude companion IC 3583.) Using low power, enjoy this wonderful 10th magnitude spiral galaxy and the bright “traveller” in the same field.

For a real challenge, try spotting IC 2118 about a thumb’s width west of Beta Orionis before it sets. “The Witch Head Nebula” is a huge area of reflection illuminated by Rigel, but is very faint. With excellent conditions you may be able to spot some patches of nebulosity.

Be sure to watch for any meteors which may be associated with the Eta Draconid meteor shower. These infrequent fliers can be attributed to Comet Abell (1954 X) and are still being studied.

Friday, April 1 – Today in 1960 the first weather satellite – Tiros 1 – was launched. If weather provides you with clear skies this evening, let’s work on a study that is within both binocular and telescopic ability. Turn left at Betelgeuse and you will find open cluster NGC 2244 about 2 degrees east of Epsilon Monoceros.
Containing around two dozen resolvable stars, a good, dark night will treat binocular and low power telescope users to the NGC 2237 – “Rosette” nebula. Surrounding this pretty open cluster like a faint, misty wreath – the “Rosette” may be one of the most massive nebulae known. It is possible that the star cluster may have used all the “raw material” in formation, leaving the center clear… And it is equally probable that the intense radiation of these hot, young blue stars simply blew away the gas. Either way, this pair will become an annual favourite.

If you see a “shooting star” tonight, it could be one of the Tau Draconids!

Saturday, April 2 – Today in 1845, the first photograph of the Sun was taken. While solar photography and observing is the domain of properly filtered telescopes, no special equipment is necessary to see some effects of the Sun – only the correct conditions. Right now Earth’s magnetosphere and magnetopause (the point of contact) are positioned correctly to interact with the Sun’s influencing interplanetary magnetic field (IMF) – and the plasma stream which flows past us as solar winds. During the time around equinox, this leaves the door wide open for one of the most awesome signs of Spring – aurora! Visit the Geophysical Institute to sign up for aurora alerts and use their tools to help locate the position of the Earth’s auroral oval.

Sunday, April 3 – Tonight Jupiter will be at opposition – meaning its celestial longitude is 180 degrees from the Sun and will be visible all night long. You will be able to watch the transit of Europa’s shadow between 16:30 and 19:11 UT, and Io’s shadow from 23:23 until 01:35 UT on April 4. Also viewable will be the “Great Red Spot” which will make its appearance at 04:23 and 14:19 and for viewers further west, 00:15 UT on April 4.

While out observing, be on the lookout for the Kappa Serpentid meteor shower, whose radiant is near Corona Borealis. The fall rate will be about 5 per hour.

Until next week? Ask for the Moon, but keep reaching for the stars! Light speed… ~Tammy Plotner

Spacewalkers Release Mini-Satellite

The residents of the International Space Station ventured outside today for a 4-hour, 30-minute spacewalk to install communications equipment on the exterior of the Zvezda Service Module and deploy a small satellite experiment. The equipment installation tasks were preparations for the maiden docking of the European Space Agency?s cargo carrier, the Automated Transfer Vehicle ?Jules Verne,? due to launch next year.

Clad in Russian Orlan spacesuits, Expedition 10 Commander and NASA Science Officer Leroy Chiao and Flight Engineer Salizhan Sharipov left the Pirs Docking Compartment airlock at 12:25 a.m. CST and quickly set up tools and tethers for their excursion. Sharipov activated the Russian Nanosatellite for later deployment.

With no one left inside, Station systems were either deactivated or put in autonomous operation for the duration of the spacewalk. Hatches were also closed between the U.S. and Russian segments of the complex in the unlikely event the crew would not have been able to return to the outpost.

The first task was the installation of three space-to-space communications, or so-called WAL, antennas on the forward conical section of Zvezda. The S-band low gain antennas are part of the Proximity Communications Equipment (PCE) to be used for ATV and Service Module interaction during the future rendezvous and docking operations. The first three antennas were installed on the aft end of Zvezda during Expedition 9.

About 2 hours into the spacewalk, from a ladder attached to Pirs, Sharipov deployed the foot-long, 11-pound Nanosatellite toward the aft end of the Station as Chiao photographed its departure. The experiment contains a transmitter and while it orbits the Earth, is expected to help develop small satellite control techniques, monitor satellite operations and develop new attitude system sensors. Russian experts informed the crew they received a good signal from the satellite two hours after its deployment.

The spacewalkers gathered the tools and equipment for the next task as Russian flight controllers inhibited the Russian thrusters from firing in the crew?s next worksite area. Once that was complete, the crewmembers were given approval to move toward the aft end of Zvezda. Once in place, they installed a Global Positioning System receiver. The receiver is also part of the ATV communications hardware and will give the approaching vehicle data about its relative position to the Station during rendezvous operations.

While in the area for the installation of GPS cabling, Chiao and Sharipov also inspected and photographed the location of an antenna used for communications with the Service Module to confirm its position for Russian technicians. Chiao then photographed a previously installed laser reflector that will also be used for ATV proximity operations. The crewmembers continued to secure cabling on Zvezda as they worked their way back toward Pirs.

Despite the recent loss of one of the three functioning Control Moment Gyroscopes because of a circuit breaker failure, the remaining two gyros maintained the Station?s attitude without Russian thrusters until just before the end of the spacewalk. The Station drifted slightly without attitude control for less than 20 minutes. When Chiao and Sharipov reported they were a safe distance from Zvezda?s thrusters, the jets were reactivated and attitude was quickly regained.

The two spacewalkers entered Pirs and closed the hatch at 4:55 a.m. CST to complete their spacewalk an hour ahead of schedule. After repressurizing Pirs, Chiao and Sharipov were scheduled to return to the Station, remove their spacesuits, reactivate the ISS systems and open the hatches to the U.S. segment. The crew will begin its sleep period later this morning and enjoy a light-duty day Tuesday with a few system reconfiguration tasks scheduled.

It was the second spacewalk for Sharipov and Chiao?s sixth. The pair logged almost 10 hours of spacewalking time during their two Expedition excursions. Today?s spacewalk was the 58th in support of ISS assembly and maintenance, the 33rd staged from the ISS itself and the 15th from Pirs. A total of 348 hours and 15 minutes of spacewalking time has been logged in the Station?s lifetime.

Original Source: NASA News Release

Survey Finds Dark Accelerators

In the March 25th 2005 issue of Science Magazine, the High Energy Stereoscopic System (H.E.S.S.) team of international astrophysicists, including UK astronomers from the University of Durham, report results of a first sensitive survey of the central part of our galaxy in very high energy (VHE) gamma-rays. Included among the new objects discovered are two ‘dark accelerators’ – mysterious objects that are emitting energetic particles, yet apparently have no optical or x-ray counterpart.

This survey reveals a total of eight new sources of VHE gamma-rays in the disc of our Galaxy, essentially doubling the number known at these energies. The results have pushed astronomy into a previously unknown domain, extending our knowledge of the Milky Way in a novel wavelength regime thereby opening a new window on our galaxy.

Gamma-rays are produced in extreme cosmic particle accelerators such as supernova explosions and provide a unique view of the high energy processes at work in the Milky Way. VHE gamma-ray astronomy is still a young field and H.E.S.S. is conducting the first sensitive survey at this energy range, finding previously unknown sources.

Particularly stunning is that two of these new sources discovered by H.E.S.S. have no obvious counterparts in more conventional wavelength bands such as optical and X-ray astronomy. The discovery of VHE gamma-rays from such sources suggests that they may be `dark accelerators’, as Stefan Funk from the Max-Planck Institut in Heidelberg affirms: “These objects seem to only emit radiation in the highest energy bands. We had hoped that with a new instrument like H.E.S.S. we would detect some new sources, but the success we have now exceeds all our expectations.”

Dr Paula Chadwick of the University of Durham adds “Many of the new objects seem to be known categories of sources, such as supernova remnants and pulsar wind nebulae. Data on these objects will help us to understand particle acceleration in our galaxy in more detail; but finding these ‘dark accelerators’ was a surprise. With no counterpart at other wavelengths, they are, for the moment, a complete mystery.”

Cosmic particle accelerators are believed to accelerate charged particles, such as electrons and ions, by acting on these particles with strong shock waves. High-energy gamma rays are secondary products of the cosmic accelerators and are easier to detect because they travel in straight lines from the source, unlike charged particles which are deflected by magnetic fields. The cosmic accelerators are usually visible at other wavelengths as well as VHE gamma rays.

The H.E.S.S. array is ideal for finding these new VHE gamma ray objects, because as well as studying objects seen at other wavelengths that are expected to be sources of very high energy gamma rays, its wide field of view (ten times the diameter of the Moon) means that it can survey the sky and discover previously unknown sources.

Another important discovery is that the new sources appear with a typical size of the order of a tenth of a degree; the H.E.S.S. instrument for the first time provides sufficient resolution and sensitivity to see such structures. Since the objects cluster within a fraction of a degree from the plane of our Galaxy, they are most likely located at a significant distance – several 1000 light years from the sun – which implies that these cosmic particle accelerators extend over a size of light years.

The results were obtained using the High Energy Stereoscopic System (H.E.S.S.) telescopes in Namibia, in South-West Africa. This system of four 13 m diameter telescopes is currently the most sensitive detector of VHE gamma-rays, radiation a million million times more energetic than the visible light. These high energy gamma rays are quite rare – even for relatively strong sources, only about one gamma ray per month hits a square meter at the top of the earth’s atmosphere. Also, since they are absorbed in the atmosphere, a direct detection of a significant number of the rare gamma rays would require a satellite of huge size. The H.E.S.S. telescopes employ a trick – they use the atmosphere as detector medium. When gamma rays are absorbed in the air, they emit short flashes of blue light, named Cherenkov light, lasting a few billionths of a second. This light is collected by the H.E.S.S. telescopes with big mirrors and extremely sensitive cameras and can be used to create images of astronomical objects as they appear in gamma-rays.

The H.E.S.S. telescopes represent several years of construction effort by an international team of more than 100 scientists and engineers from Germany, France, the UK, Ireland, the Czech Republic, Armenia, South Africa and the host country Namibia. The instrument was inaugurated in September 2004 by the Namibian Prime Minister, Theo-Ben Guirab, and its first data have already resulted in a number of important discoveries, including the first astronomical image of a supernova shock wave at the highest gamma-ray energies.

Original Source: PPARC News Release

Libya’s Ubari and Murzuq Sand Seas

This Envisat image shows two huge sand dune seas in the Fezzan region of southwestern Libya, close to the border with Algeria.

Most of the face of the Sahara desert stretching across Northern Africa is bare stone and pebbles rather than sand dunes, but there are exceptions ? sprawling sea of multi-storey sand dunes known as ‘ergs’.

The Erg Ubari (also called Awbari) is the reddish sand sea towards the top of the image. A dark outcrop of Nubian sandstone separates the Erg Ubari sand from the Erg Murzuq (also called Murzuk) further south.

A persistent high-pressure zone centred over Libya keeps the centre of the Sahara completely arid for years at a time, but research has discovered evidence of ‘paleolakes’ in this region associated with a wetter and more fertile past.

Libya today has no permanent rivers or water bodies, but has various vast fossil aquifers. These natural underground basins hold enormous amounts of fresh water.

Two decades ago an ambitious project called Great Man-Made River was begun, aimed at drawing water from the aquifers beneath the Fezzan region shown in the image, via a network of underground pipes for irrigation in the coastal belt. Upon completion the huge network of pipelines will extend to about 3,380 km.

Envisat’s Medium Resolution Imaging Spectrometer (MERIS), working in Full Resolution mode to provide a spatial resolution of 300 metres, acquired this image on 24 November 2004. It has a width of 672 kilometres.

Original Source: ESA News Release

Asteroid Created a Rain of Rock

Scientists at the American Museum of Natural History and the University of Chicago have explained how a globe-encircling residue formed in the aftermath of the asteroid impact that triggered the extinction of the dinosaurs. The study, which will be published in the April issue of the journal Geology, draws the most detailed picture yet of the complicated chemistry of the fireball produced in the impact.

The residue consists of sand-sized droplets of hot liquid that condensed from the vapor cloud produced by an impacting asteroid 65 million years ago. Scientists have proposed three different origins for these droplets, which scientists call ?spherules.? Some researchers have theorized that atmospheric friction melted the droplets off the asteroid as it approached Earth?s surface. Still others suggested that the droplets splashed out of the Chicxulub impact crater off the coast of Mexico?s Yucatan Peninsula following the asteroid?s collision with Earth.

But analyses conducted by Denton Ebel, Assistant Curator of Meteorites at the American Museum of Natural History, and Lawrence Grossman, Professor in Geophysical Sciences at the University of Chicago, provide new evidence for the third proposal. According to their research, the droplets must have condensed from the cooling vapor cloud that girdled the Earth following the impact.

Ebel and Grossman base their conclusions on a study of spinel, a mineral rich in magnesium, iron and nickel contained within the droplets.

?Their paper is an important advance in understanding how these impact spherules form,? said Frank Kyte, adjunct associate professor of geochemistry at the University of California, Los Angeles. ?It shows that the spinels can form within the impact plume, which some researchers argued was not possible.?

When the asteroid struck approximately 65 million years ago, it rapidly released an enormous amount of energy, creating a fireball that rose far into the stratosphere. ?This giant impact not only crushes the rock and melts the rock, but a lot of the rock vaporizes,? Grossman said. ?That vapor is very hot and expands outward from the point of impact, cooling and expanding as it goes. As it cools the vapor condenses as little droplets and rains out over the whole Earth.?

This rain of molten droplets then settled to the ground, where water and time altered the glassy spherules into the clay layer that marks the boundary between the Cretaceous and Tertiary (now officially called the Paleogene) periods. This boundary marks the extinction of the dinosaurs and many other species.

The work that led to Ebel and Grossman?s Geology paper was triggered by a talk the latter attended at a scientific meeting approximately 10 years ago. At this talk, a scientist stated that spinels from the Cretaceous-Paleogene boundary layer could not have condensed from the impact vapor cloud because of their highly oxidized iron content. ?I thought that was a strange argument,? Grossman said. ?About half the atoms of just about any rock you can find are oxygen,? he said, providing an avenue for extensive oxidation.

Grossman?s laboratory, where Ebel worked at the time, specializes in analyzing meteorites that have accumulated minerals condensed from the gas cloud that formed the sun 4.5 billion years ago. Together they decided to apply their experience in performing computer simulations of the condensation of minerals from the gas cloud that formed the solar system to the problem of the Cretaceous-Paleogene spinels.

UCLA?s Kyte, who himself favored a fireball origin for the spinels, has measured the chemical composition of hundreds of spinel samples from around the world.

Ebel and Grossman built on on Kyte?s work and on previous calculations done by Jay Melosh at the University of Arizona and Elisabetta Pierazzo of the Planetary Science Institute in Tucson, Ariz., showing how the asteroid?s angle of impact would have affected the chemical composition of the fireball. Vertical impacts contribute more of the asteroid and deeper rocks to the vapor, while impacts at lower angles vaporize shallower rocks at the impact site.

Ebel and Grossman also drew upon the work of the University of Chicago?s Mark Ghiorso and the University of Washington?s Richard Sack, who have developed computer simulations that describe how minerals change under high temperatures.

The resulting computer simulations developed by Ebel and Grossman show how rock vaporized in the impact would condense as the fireball cooled from temperatures that reached tens of thousands of degrees. The simulations paint a picture of global skies filled with a bizarre rain of a calcium-rich, silicate liquid, reflecting the chemical content of the rocks around the Chicxulub impact crater.

Their calculations told them what the composition of the spinels should be, based on the composition of both the asteroid and the bedrock at the impact site in Mexico. The results closely matched the composition of spinels found at the Cretaceous-Paleogene boundary around the world that UCLA?s Kyte and his associates have measured.

Scientists had already known that the spinels found at the boundary layer in the Atlantic Ocean distinctly differed in composition from those found in the Pacific Ocean. ?The spinels that are found at the Cretaceous-Paleogene boundary in the Atlantic formed at a hotter, earlier stage than the ones in the Pacific, which formed at a later, cooler stage in this big cloud of material that circled the Earth,? Ebel said.

The event would have dwarfed the enormous volcanic eruptions of Krakatoa and Mount St. Helens, Ebel said. ?These kinds of things are just very difficult to imagine,? he said.

The results in this paper strengthen the link between the unique Chicxulub impact and the stratigraphic boundary marking the mass extinction 65 million years ago that ended the Age of Dinosaurs. The topic will be explored further in a new groundbreaking exhibition, ?Dinosaurs: Ancient Fossils, New Discoveries,? set to open at the American Museum of Natural History on May 14. After it closes in the New York, the exhibition will travel to the Houston Museum of Natural Science (March 3-July 30, 2006); the California Academy of Sciences, San Francisco (Sept. 15, 2006-Feb. 4, 2007); The Field Museum, Chicago (March 30-Sept. 3, 2007); and the North Carolina State Museum of Natural Sciences, Raleigh (Oct. 26, 2007-July 5, 2008).

Original Source: University of Chicago News Release

First Centennial Prizes Announced

Image credit: Spaceward
NASA and its partner, the Spaceward Foundation, today announced prizes totaling $400,000 for four prize competitions, the first under the agency’s Centennial Challenges program.

NASA’s Centennial Challenges promotes technical innovation through a novel program of prize competitions. It is designed to tap the nation’s ingenuity to make revolutionary advances to support the Vision for Space Exploration and NASA goals. The first two competitions will focus on the development of lightweight yet strong tether materials (Tether Challenge) and wireless power transmission technologies (Beam Power Challenge).

“For more than 200 years, prizes have played a key role in spurring new achievements in science, technology, engineering and exploration,” said NASA’s Associate Administrator for Exploration Systems Mission Directorate, Craig Steidle. “Centennial Challenges will use prizes to help make the Vision for Space Exploration a reality,” he added.

“This is an exciting start for the Centennial Challenges program,” said Brant Sponberg, program manager for Centennial Challenges. “The innovations from these competitions will help support advances in aerospace materials and structures, new approaches to robotic and human planetary surface operations, and even futuristic concepts like space elevators and solar power satellites,” he said.

The Tether Challenge centers on the creation of a material that combines light weight and incredible strength. Under this challenge, teams will develop high strength materials that will be stretched in a head-to-head competition to see which tether is strongest.

The Beam Power challenge focuses on the development of wireless power technologies for a wide range of exploration purposes, such as human lunar exploration and long-duration Mars reconnaissance. In this challenge, teams will develop wireless power transmission systems, including transmitters and receivers, to power robotic climbers to lift the greatest weight possible to the top of a 50-meter cable in under three minutes.

The winners of each initial 2005 challenge will receive $50,000. A second set of Tether and Beam Power challenges in 2006 are more technically challenging. Each challenge will award purses of $100,000, $40,000, and $10,000 for first, second, and third place.

“We are thrilled with our partnership with NASA and we’re excited to take the Tether and Beam Power challenges to the next level,” said Meekk Shelef, president of the Spaceward Foundation.

The Centennial Challenges program is managed by NASA’s Exploration Systems Mission Directorate. The Spaceward Foundation is a public-funds non-profit organization dedicated to furthering the cause of space access in educational curriculums and the public.

For more information about the Challenges on the Internet, visit:

http://centennialchallenges.nasa.gov

Original Source: NASA News Release