Scientists Investigate Potential Regolith Origin on Uranus’ Moon, Miranda

Credit: NASA/JPL-Caltech

In a recent study published in The Planetary Science Journal, a pair of researchers led by The Carl Sagan Center at the SETI Institute in California investigated the potential origin for the thick regolith deposits on Uranus’ moon, Miranda. The purpose of this study was to determine Miranda’s internal structure, most notably its interior heat, which could help determine if Miranda harbors—or ever harbored—an internal ocean.

Continue reading “Scientists Investigate Potential Regolith Origin on Uranus’ Moon, Miranda”

Ice Giants at Opposition


It seems as if the planets are fleeing the evening sky, just as the Fall school star party season is getting underway. Venus and Mars have entered the morning sky, and Jupiter reaches solar conjunction this week. Even glorious Saturn has passed eastern quadrature, and will soon depart evening skies.

Enter the ice giants, Uranus and Neptune. Both reach opposition for 2015 over the next two months, and the time to cross these two out solar system planets off your life list is now.

Aug 26
Looking east at dusk in late August, as Uranus and Neptune rise. Image credit: Stellarium

First up, the planet Neptune reaches opposition next week in the constellation Aquarius on the night of August 31st/September 1st. Shining at magnitude +7.8, Neptune spends the remainder of 2015 about three degrees southwest of the +3.7 magnitude star Lambda Aquarii.  It’s possible to spot Neptune using binoculars, and about x100 magnification in a telescope eyepiece will just resolve the blue-grey 2.3 arc second disc of the planet. Though Neptune has 14 known moons, just one, Triton, is within reach of a backyard telescope. Triton shines at magnitude +13.5 (comparable to Pluto), and orbits Neptune in a retrograde path once every 6 days, getting a maximum of 15” from the disk of the planet.

Nep Aug-Nov Triton aug 31
The path of Neptune from late August through early November 2015. Inset: the position of Neptune’s moon Triton on the evening of August 31st: Image credit: Starry Night Education software

Uranus reaches opposition on October 11th in the adjacent constellation Pisces.  Keep an eye on Uranus, as it nears the bright +5.2 magnitude star Zeta Piscium towards the end on 2015. Shining at magnitude +5.7 with a 3.6 arc second disk, Uranus hovers just on the edge of naked eye visibility from a dark sky site.

Uranus, left of the eclipsed Moon last October. Image credit and copyright: A Nartist

It’ll be worth hunting for Uranus on the night of September 27th/28th, when it sits 15 degrees east of the eclipsed Moon. Uranus turned up in many images of last Fall’s total lunar eclipse.  This will be the final total lunar eclipse of the current tetrad, and the Moon will occult Uranus the evening after for the South Atlantic. This is part of a series of 19 ongoing occultations of Uranus by the Moon worldwide, which started in August 2014, and end on December 20th, 2015. After that, the Moon will move on and begin occulting Neptune next year in June through the end of 2017.

The visibility footprint of the September 29th occultation of Uranus by the Moon. Image credit: Occult 4.0.

Uranus has 27 known moons, four of which (Oberon, Ariel, Umbriel and Titania) are visible in a large backyard telescope. See our extensive article on hunting the moons of the solar system for more info, and the JPL/PDS rings node for corkscrew finder charts.

Uranus aug-dec moons oct12
The path of Uranus, from late August through early December 2015. Inset: the position of the moons of Uranus on the evening of October 12th. Image credit: Starry Night Education software

The two outermost worlds have a fascinating entwined history. William Herschel discovered Uranus on the night of March 13th, 1781. We can be thankful that the proposed name ‘George’ after William’s benefactor King George the III didn’t stick. Herschel initially thought he’d discovered a comet, until he followed the slow motion of Uranus over several nights and realized that it had to be something large orbiting at a great distance from the Sun. Keep in mind, Uranus and Neptune both crept onto star charts unnoticed pre-1781. Galileo even famously sketched Neptune near Jupiter in 1612!  Early astronomers simply considered the classical solar system out to Saturn as complete, end of story.

A classic 7″ Merz refractor at the Quito observatory, nearly identical to the instrument that first spied Neptune. Image Credit: Dave Dickinson

And the hunt was on. Astronomers soon realized that Uranus wasn’t staying put: something farther still from the Sun was tugging at its orbit. Mathematician Urbain Le Verrier predicted the position of the unseen planet, and on and on the night of September 23rd, 1846, astronomers at the Berlin observatory spied Neptune.

In a way, those early 19th century astronomers were lucky. Neptune and Uranus had just passed each other during a close encounter in 1821. Otherwise, Neptune might’ve remained hidden for several more decades. The synodic period of the two planets—that is, the time it takes the planets to return to opposition—differ by about 2-3 days. The very first documented conjunction of Neptune and Uranus occurred back in 1993, and won’t occur again until 2164. Heck, In 2010, Neptune completed its first orbit since discovery!

To date, only one mission, Voyager 2, has given us a close-up look at Uranus and Neptune during brief flybys. The final planetary encounter for Voyager 2 occurred in late August in 1989, when the spacecraft passed 4,800 kilometres (3,000 miles) above the north pole of Neptune.

All thoughts to ponder as you hunt for the outer ice giants. Sure, they’re tiny dots, but as with many nighttime treats, the ‘wow’ factor comes with just what you’re seeing, and the amazing story behind it.

‘Frankenstein’ Moon: Tidal Forces From Uranus May Have Contributed to Miranda’s Bizarre Appearance

Uranus' Five Largest Moons
Uranus' five largest moons shown in increasing distance from the planet. Note there is incomplete coverage of Miranda and Ariel. Image credit: NASA/JPL

Miranda, the innermost of Uranus’ five moons, has a “Frankenstein”-like appearance: it looks as though it was pieced together from parts that didn’t quite fit together properly. Plus, it has incredibly diverse surface features including canyons up to 12 times deeper than Earth’s Grand Canyon, impact craters, cliffs, and parallel grooves called sulci.

Over the years, various hypotheses have been presented in an attempt to account for Miranda’s enigmatic appearance. First thought to be the result of a catastrophic impact, disintegration, and subsequent reassembly, scientists now believe that some of Miranda’s features might have been influenced by Uranus itself, and are the result of convection: thermally-induced resurfacing from tidal forces from the planet.

Miranda's Three Coronae
Three large, geometric-shaped features called coronae are visible on Miranda. To date, Venus and Miranda are the only bodies in our solar system on which coronae have been observed. Image Credit: NASA/JPL-Caltech

Miranda was discovered in 1948 by Gerard Kuiper. Although it is only 293 miles (471 kilometers) in diameter (approximately one-seventh that of Earth’s moon,) it has one of the strangest and most varied landscapes in our Solar System.

Central to the new research was analysis of three very large, geometric shaped features known as coronae, which are only found on one other planetary body. Coronae were first identified on Venus in 1983 by Venera 15/16 radar imaging equipment.

A leading theory about their formation has been that they form when warm, sub-surface fluids rise to the surface and form a dome. As the edges of the dome cool, the center collapses and warm fluid leak out its sides, forming a crown-like structure, or corona. Based on this premise, the question is then raised as to what mechanism/processes in Miranda’s past warmed its interior sufficiently to produce warm, sub-surface fluids that resulted in coronae formation. Scientists believe that tidal warming played an important role in the formation of the coronae, but the process by which this internal heating led to these features has remained unclear.

Extensive 3D computer simulations conducted by Brown University’s Noah P. Hammond and Amy C. Barr have produced results that are consistent with the three coronae seen on Miranda. In their paper titled, “Global Resurfacing of Uranus’s Moon Miranda by Convection,” Hammond and Barr summarize their results as follows:

“We find that convection in Miranda’s ice shell powered by tidal heating can generate the global distribution of coronae, the concentric orientation of sub-parallel ridges and troughs, and the thermal gradient implied by flexure. Models that account for the possible distribution of tidal heat ing can even match the precise locations of the coronae, after a reorientation of 60°.”

Using Saturn’s moon Enceladus as a baseline due to its similarity in size, composition, and orbital frequency to Miranda, original calculations estimate that as much as 5 GW of tidal dissipation power could be generated. Hammond and Barr’s simulation results indicate almost twice that amount of power would have been created:

“Simulations that match the thermal gradient from flexure have total power outputs of close to 10 GW , somewhat larger than the total power we predict could be generated during orbital resonance.”

Results from Hammond and Barr’s simulations provide a preliminary set of answers that strive to unlock the mysteries of Miranda’s bizarre appearance. Future simulations and studies into the complex nature of tidal heating will build upon these results to provide further insight into the enigmatic moon we call Miranda.

“Global Resurfacing of Uranus’s Moon Miranda by Convection,” was published online on 15 September 2014 in GEOLOGY, a journal of The Geological Society of America. You can read the abstract here.