NASA Picks the Next Mars Lander

Image credit: NASA/JPL

NASA announced on Monday that it has selected the University of Arizona’s “Phoenix” mission to launch to Mars in 2007 as part of its new, low-cost Scout mission. NASA has granted the university $325 million to build the spacecraft, which will land on the planet’s northern pole, which is rich in water ice. The mission will have two goals: to study the geologic history of water, and to search for evidence of a habitable zone that may exist in the ice-soil boundary.

In May 2008, the progeny of two promising U.S. missions to Mars will deploy a lander to the water-ice-rich northern polar region, dig with a robotic arm into arctic terrain for clues on the history of water, and search for environments suitable for microbes.

NASA today announced that it has selected the University of Arizona “Phoenix” mission for launch in 2007 as what is hoped will be the first in a new line of smaller competed “Scout” missions in the agency’s Mars Exploration Program.

Dr. Peter H. Smith of the University of Arizona Lunar and Planetary Laboratory heads the Phoenix mission, named for the mythological bird that is repeatedly reborn of ashes. The $325 million NASA award is more than six times larger than any other single research grant in University of Arizona history.

“The selection of Phoenix completes almost two years of intense competition with other institutions,” Smith said. “I am overjoyed that we can now begin the real work that will lead to a successful mission to Mars.”

Phoenix is a partnership of universities, NASA centers, and the aerospace industry. The science instruments and operations will be a University of Arizona responsibility. NASA’s Jet Propulsion Laboratory in Pasadena, Calif., will manage the project and provide mission design. Lockheed Martin Space Systems, Denver, will build and test the spacecraft. Canadian partners will provide the meteorological instrumentation, including an innovative laser-based sensor.

Phoenix has the scientific capability “to change our thinking about the origins of life on other worlds,” Smith said. “Even though the northern plains are thought to be too cold now for water to exist as a liquid, periodic variations in the martian orbit allow a warmer climate to develop every 50,000 years. During these periods the ice can melt, dormant organisms could come back to life, (if there are indeed any), and evolution can proceed. Our mission will verify whether the northern plains are indeed a last viable habitat on Mars.”

The lander for Phoenix was built and was being tested to fly as part of the 2001 Mars Surveyor Program, but the program was canceled after the Mars Polar Lander was lost upon landing near Mars’ south pole in December 1999. Since then, the 2001 lander has been stored in a clean room at Lockheed Martin in Denver, managed by NASA’s new Mars Exploration Program as a flight asset.

Renamed Phoenix, it will carry improved versions of University of Arizona panoramic cameras and volatiles-analysis instrument from the ill-fated Mars Polar Lander, as well as experiments that had been built for the 2001 Mars Surveyor Program, including a JPL trench-digging robot arm and a chemistry-microscopy instrument. The science payload also includes a descent imager and a suite of meteorological instruments.

The mission has two goals. One is to study the geologic history of water, the key to unlocking the story of past climate change. Two is to search for evidence of a habitable zone that may exist in the ice-soil boundary, the “biological paydirt.”

The Phoenix robotic arm will scoop up martian soil samples and deliver them for heating into tiny ovens of the volatiles-analysis instrument so team members can measure how much water vapor and carbon dioxide gas are given off, how much water ice the samples contain, and what minerals are present that may have formed during a wetter, warmer past climate. The instrument, called thermal evolved gas analyzer, will also measure any organic volatiles.

Using another instrument, researchers will examine soil particles as small as 16 microns across. They will measure electrical and thermal conductivity of soil particles using a probe on the robotic arm scoop. One of the most interesting experiments is the wet chemistry laboratory, Smith said.

“We plan to scoop up some soil, put it in a cell, add water, shake it up, and measure the impurities dissolved in the water that have leached out from the soil. This is important, because if the soil ever gets wet, we’ll know if microbes could survive. We’ll know if the wet soil is super acidic or alkaline and salty, or full of oxidants that can destroy life. We’ll test the environment that microbes might have had to live and grow in,” Smith said.

Information is available online about NASA’s Mars exploration at http://mars.jpl.nasa.gov and about Phoenix at http://phoenix.lpl.arizona.edu .

Original Source: NASA News Release

Mars is Close and Getting Closer

Image credit: Hubble

On August 27, 2003 the Planet Mars will be a mere 55.76 million kilometres away from the Earth – the closest it’s been in 50,000 years. Visible in the early morning, Mars is the brightest object in the sky, after the Moon and Venus, and almost any small telescope will be able to show details on the planet’s surface. Make sure you enjoy Mars’ close approach this summer, as it won’t make another visit this close for nearly 300 years.

Living too close to a neighbor may not be very appealing, but when Earth?s neighboring red planet moves closer than it?s been in 60,000 years, observers expect nothing but acclaim.

This August, scientists and amateur astronomers will benefit from the spectacular view of Mars as it appears bigger and brighter than ever before, revealing its reflective south polar cap and whirling dust clouds.

On August 27, 2003, the fourth rock from the sun will be less than 55.76 million kilometers (34.65 million miles) away from the Earth. In comparison to the space between your house and your neighbor?s yard, that may seem like a large distance, but Mars was about five times that distance from Earth only six months ago.

“Think of Earth and Mars as two race cars going around a track,” said Dr. Myles Standish, an astronomer from NASA?s Jet Propulsion Laboratory, Pasadena, Calif. “Earth is on a race track that is inside the track that Mars goes around, and neither track is perfectly circular. There is one place where the two race tracks are closest together. When Earth and Mars are at that place simultaneously, it is an unusually close approach, referred to as a ‘perihelic opposition’.”

Opposition is a term used when Earth and another planet are lined up in the same direction from the Sun. The term perihelic comes from perihelion, the point of orbit in which a celestial body is closest to the Sun. This August, Mars will reach its perihelion and be in line with Earth and the Sun at the same time.

The average opposition occurs about every two years, when Earth laps Mars on its orbit around the Sun. In 1995, the opposition brought Mars 101.1 million kilometers (62.8 million miles) from the Earth, twice as far as this most recent approach.

“It gets more complicated as the race tracks are changing shape and size and are rotating, changing their orientation,” Standish explains. “So this place where the two tracks are closest together constantly changes, changing the opposition closeness as well. This is why a ‘great’ approach, like the one this month, hasn?t happened in 60,000 years. But with the tracks closer together now, there will be even closer approaches in the relatively near future.”

Aside from visiting a local observatory, peering through a telescope is the best way to take advantage of this unique opportunity. Since June, Mars has been noticeably bright in the night?s sky, only outshined by Venus and the Moon. Observers in the Northern Hemisphere will see it glowing remarkably in the southern sky in the constellation Aquarius, best seen just before dawn.

“You’re not going to go outside and see some big red ball in the sky. It will look like a bright red star,” said Standish.

The word ‘planet’ is derived from the Greek expression for ?wanderer.? At such a close distance, Mars remains true to this expectation as it consistently wanders across the night?s sky. Tracking the “red star?s” movement from week to week is yet another way to appreciate the opposition as Mars appears to dart across the sky in comparison to more distant planets, such as Jupiter.

Although Mars will be closest on August 27, astronomers suggest viewing the planet earlier, as dust storm season is just beginning on the red planet and can obstruct a more detailed view.

Whether you are viewing through a telescope, glancing through a pair of binoculars, or star-gazing outside the city, be sure to take advantage of this once-in-a-lifetime opportunity, for Mars will not make another neighborly visit this close until 2287.

Original Source: NASA/JPL News Release

Dust Storm on Mars Visible By Amateurs

Image credit: Hubble

Now that Mars is closer than ever, amateur astronomers with regular backyard telescopes can see incredible details on the planet’s surface. On July 1, astronomers were able to see a dust storm in the Hellas Basin; four days later it was 1,800 kilometres wide, obscuring nearly a quarter of the planet. Two years ago a similar storm grew in the same region and ended up obscuring the entire planet for months. Earth and Mars will reach their closest point in 60,000 years on August 27, 2003, and the Red Planet should offer up some tremendous views.

Something is happening on Mars and it’s so big you can see it through an ordinary backyard telescope.

On July 1st a bright dust cloud spilled out of Hellas Basin, a giant impact crater on Mars’ southern hemisphere. The cloud quickly spread and by the Fourth of July was 1100 miles wide–about one-fourth the diameter of Mars itself.

“The cloud can be seen now through a telescope as small as 6 inches,” says Donald Parker, executive director of the Association of Lunar and Planetary Observers (ALPO). “Its core is quite bright.”

Parker has been tracking the cloud through his own 16-inch telescope. “A red filter helps,” he notes. “Even a piece of red or orange gelatin held between the eye and ocular will improve the visibility of the dust.”

Two years ago, a similar cloud from Hellas Basin grew until it circled the entire planet. Features on Mars long familiar to amateur astronomers–the dark volcanic terrain of Syrtis Major, for example–were hidden for months. “The planet looked like an orange billiard ball,” recalls Parker.

Will it happen again?

“No one knows,” says astronomer James Bell of Cornell University who studied the dust storm of 2001 using the Hubble telescope. “We don’t yet understand the mechanism that causes regional clouds to self-assemble into giant dust storms.”

Mars Global Surveyor and Mars Odyssey, two NASA spacecraft circling Mars, have seen many “regional storms” like the cloud near Hellas Basin now. They persist for a few days or weeks, then dissipate. Rarely do they become a planet-wide event.

“Only 10 global or planet-encircling dust storms have been reported since 1877,” notes Parker.

All dust storms on Mars, no matter what size, are powered by sunshine. Solar heating warms the martian atmosphere and causes the air to move, lifting dust off the ground.

Because the martian atmosphere is thin–about 1% as dense as Earth’s at sea level–only the smallest dust grains hang in the air. “Airborne dust on Mars is about as fine as cigarette smoke,” says Bell. These fine grains reflect 20% to 25% of the sunlight that hits them; that’s why the clouds look bright. (For comparison, the reflectivity of typical martian terrain is 10% to 15%.)

Sunlight on Mars is about to become unusually intense. The planet goes around the sun in a 9%-elliptical orbit with one end 40 million km closer to the sun than the other. Mars reaches perihelion–its closest approach to the sun–on August 30th. During the weeks around perihelion, sunlight striking Mars will be 20% more intense than the annual average.

“This means the season for dust storms is just beginning,” says Bell.

A total of four spacecraft from NASA, the European Space Agency and Japan are en route to Mars now. They include three landers and two orbiters. Will dust storms cause problems for those missions?

Probably not. NASA spacecraft have encountered Mars dust before. The Viking landers of 1976, for instance, weathered two big dust storms without being damaged. As far as researchers were concerned, it was a good opportunity to study such storms from the inside–something Mars colonists may do again one day for themselves. Viking data will give them a head start.

Five years earlier, in 1971, the Mariner 9 spacecraft reached Mars during the biggest dust storm ever recorded. The planet was completely obscured; not even the polar caps were visible. Mission controllers simply waited a few weeks for the storm to subside. Then they carried on with Mariner 9’s mission: to photograph the entire surface of the planet. It was a complete success.

As 2003 unfolds, Earth and Mars are drawing together for their closest approach in some 60,000 years on August 27th. Already in July Mars is a pleasing sight. Step outside before dawn anytime this month. Mars will be there in the southern sky, a remarkably bright red star. (If you live in the southern hemisphere, look northeast instead.)

Right: John Nemy and Carol Legate took this recent picture of bright Mars and a meteor above their campsite on Blackcomb Mountain, Whistler, British Columbia.

Even a small telescope will reveal the planet’s orange disk and its icy south polar cap. And if “seeing is good” you might catch a glimpse of some dust clouds. Swirling, surging, merging with others … building the next global dust storm? “They’re fun to watch,” says Parker. Now is a great time to see for yourself.

Original Source: NASA Science Story

Opportunity is Working Well

Image credit: NASA/JPL

Opportunity, NASA’s second Mars Exploration rover, has been in space for a few days now and everything seems to be going according to plan. The spacecraft has reduced its spin rate from 12 rotations a minute to just 2; enabling it to switch to celestial navigation using its star scanner. In fact, one of the first reference points Opportunity used was Mars – already one of the brightest objects in view. It’s already over 7 million kilometres away from the Earth and on track to arrive at Mars on January 25.

NASA’s Opportunity spacecraft, the second of twin Mars Exploration Rovers, has successfully reduced its spin rate as planned and switched to celestial navigation using a star scanner.

Prior to today?s maneuver, Opportunity was spinning 12.13 rotations per minute. Onboard thrusters were used to reduce the spin rate to approximately 2 rotations per minute, the designed rate for the cruise to Mars. After the spinning slowed, Opportunity’s star scanner found stars that are being used as reference points for spacecraft attitude. One of the bright points in the star scanner’s first field of view was Mars.

All systems on the spacecraft are in good health. As of 6 a.m. Pacific Daylight Time July 10, Opportunity will have traveled 6.6 million kilometers (4.1 million miles) since its July 7 launch. The Mars Exploration Rover flight team at NASA’s Jet Propulsion Laboratory, Pasadena, Calif., is preparing to command Opportunity’s first trajectory-correction maneuver, scheduled for July 18.

Opportunity will arrive at Mars on Jan. 25, 2004, Universal Time (evening of Jan. 24, 2004, Eastern and Pacific times). The rover will examine its landing area in Mars’ Meridiani Planum area for geological evidence about the history of water on Mars.

Opportunity’s twin, Spirit, also continues in good health on its cruise to Mars. As of 6 a.m. Pacific Daylight Time July 10, it will have traveled 82.6 million kilometers (51.3 million miles) since its June 10 launch.

JPL, a division of the California Institute of Technology, manages the Mars Exploration Rover project for NASA’s Office of Space Science, Washington, D.C. Additional information about the project is available from JPL at http://mars.jpl.nasa.gov/mer or and from Cornell University, Ithaca, N.Y., at http://athena.cornell.edu.

Original Source: NASA/JPL News Release

Beagle 2 Tests Complete

Image credit: ESA

The European Space Agency has been testing all aspects of the Mars Express spacecraft to ensure that it’s ready for its encounter with Mars. This week they put the UK-built Beagle 2 lander through its paces. The tests included uploading software and turning various instruments on and off, and everything seems to be working properly. A final series of tests will be done in mid-July. Mars Express is expected to reach the Red Planet on December 19 – Beagle 2 will land on the surface on December 25.

On Friday 4 July, and Saturday 5 July 2003, engineers successfully carried out overnight tests on the Mars Express lander, Beagle 2.

Ground controllers at the European Space Agency’s Operations Centre in Darmstadt, Germany, contacted Mars Express at the weekend to carry out the tests on the lander, which were rescheduled from two weeks ago. These functional tests included uploading software and switching units on and off.

With these tests, the near-Earth phase of the Mars Express payload check-outs is almost complete. All instruments, including the lander, have performed as expected. Star calibration of some instruments is scheduled for mid-July, which marks the first attempt to make scientific measurements. This will also be done in the same way when nearer to Mars.

Rudi Schmidt, ESA Mars Express Project Manager, said: “This check-out was a marvellous example of complete cooperation between ESA?s Mars Express and the Beagle lander teams Another major milestone has been achieved successfully. What a fantastic feeling!”

Original Source: ESA News Release

Opportunity Blasts Off for Mars

NASA’s second Mars Exploration Rover, Opportunity, successfully lifted off from Florida early Tuesday morning after several delays. The launch was halted only seven seconds away from liftoff during the first window because of a problem with a valve on the rocket, but during the second window at 0318 GMT (11:18 pm EDT Monday) the Delta II successfully blasted off. Opportunity will reach Mars on January 25.

Another Delay for Opportunity

Image credit: NASA

NASA has pushed back the launch of its second Mars Exploration rover, “Opportunity”, again; this time because of a battery failure on the Boeing Delta II booster. The launch has now been set for Tuesday, July 8 at 0235 GMT (10:35 pm EDT Monday). Even this launch date is at risk, though, as there’s a 30% chance of weather problems. It looks like the previous problem with the booster’s cork insulation has been resolved; although, engineers will be performing further tests to ensure that everything’s fine. The spacecraft must launch before July 15 in order to reach Mars.

The launch of the MER-B Mars Exploration Rover ?Opportunity? aboard a Boeing Delta II rocket has been postponed an additional 24 hours. The delay is due to the failure of a battery cell associated with a component of the launch vehicle?s flight termination system. The battery must be removed and replaced.

Launch is now targeted for no earlier than Monday, July 7. The two launch times available are 10:35:23 and 11:18:15 p.m. EDT. The forecast calls for a 30% chance of not meeting the launch weather criteria on Monday evening.

At Pad 17-B, a tanking test of the Delta rocket was conducted this morning. The first stage was loaded with cryogenic liquid oxygen to evaluate the bonding of the lower band of cork thermal insulation. This afternoon, NASA and Boeing managers met to discuss the outcome of the tanking test and other associated testing and engineering evaluations that have been conducted over the last several days.

After the tanking, inspections revealed some selective debonding of the cork from the surface of the vehicle within a limited area. These locations are being repaired using a different adhesive with a stronger bonding characteristic as demonstrated by tests conducted at KSC late this week. This work was completed tonight and the problem has been resolved to the satisfaction of engineers.

Original Source: NASA News Release

Opportunity Launch Delayed Again

The launch of NASA’s second Mars Exploration rover, Opportunity, has been delayed again to Monday, July 7 as early as 0243 GMT (10:43 pm EDT Sunday). The delay will give technicians time to ensure that the booster’s cork insulation is properly adhered. If all goes well, Opportunity will blast off from the Kennedy Space Center in Florida on board a Delta 2 rocket and follow its partner spacecraft, Spirit, already en route to the Red Planet. Launch windows for the spacecraft are available until July 15.

Mars Express Power Problems

Image credit: ESA

Operators with the European Space Agency are currently testing various systems on the Mars Express spacecraft, and it looks like there’s a bit of a problem. It seems that there’s a connection problem between the spacecraft’s solar panels and its power conditioning system. If they can’t fix this problem, the spacecraft will only be able to operate at 70% power; however, it will still be able to perform nearly all of its objectives for the mission. Ground engineers will begin tests on the Beagle 2 lander on July 4.

ESA?s Mars Express spacecraft is progressing further every day on its journey to the Red Planet. Everything is set for arrival at Mars on the night of 25 December 2003, after a journey of about 400 million kilometres. In the weeks since its launch, engineers have started to thoroughly test the spacecraft and its equipment.

This testing phase is standard for all spacecraft on the way to their destination. Known as commissioning, it began 3 weeks after the launch. During this time, ground controllers sent signals to each of the orbiter’s seven instruments to switch them on and verify their health status.

As well as commissioning the instruments, the ground controllers also tested each of the spacecraft?s subsystems. There was a thrilling moment when one of the on-board computer memory units, known as the Solid State Mass Memory (SSMM), seemed to not respond properly during the instruments check-out. Good progress has been made on this issue in the last few days: a test involving all instruments was completed successfully by recording and recovering the data through the SSMM.

Unfortunately, during the commissioning of the power subsystem, ground engineers recorded an interconnection problem between the solar arrays and the power conditioning unit on board the spacecraft. This means approximately 70% of the power generated by the solar arrays is available for the satellite and its payload to use. This anomaly has no effect on the state of the spacecraft and has no impact on the mission during the whole trip to Mars, including the orbit insertion phase once at destination.

Despite this, the experts analysing the anomaly believe that even with this power shortage, the nominal Mars observation mission will be achievable. However, satellite payload operations may have to be reviewed for certain short periods of the mission.

Ground engineers are now preparing for the last of the payload?s tests: the Beagle-2 lander will undergo its check-out on 4-5 July 2003. The experts are looking confidently to it. “In fact,” says Rudolf Schmidt, Mars Express Project Manager, “overall, the spacecraft is in good shape. We are simply getting to know its personality.”

Original Source: ESA News Release

Opportunity Launch Rescheduled

Image credit: NASA/JPL

NASA has decided to push back the launch of its second rover, Opportunity, to no earlier than Sunday, July 6 at 0251 GMT (10:51 pm EDT Saturday). The delays give engineers time to repair insulation which is failing to adhere properly to the first stage of the Delta II rocket. The launch was delayed over the weekend because of poor weather. If all goes well, Opportunity will follow NASA’s previous rover, Spirit, already en route to Mars to search for evidence of life on the Red Planet.

The launch of the MER-B ?Opportunity? Mars Exploration Rover aboard the Boeing Delta II Heavy Iaunch vehicle has been postponed to no earlier than Saturday, July 5.

A decision was made today to take additional time to perform tests on the process used to bond the cork insulation to the surface of the Delta II launch vehicle. These tests should be complete late on Wednesday.

The launch times on Saturday evening are: 10:51:25 p.m. and 11:34:05 p.m. EDT.

Original Source: NASA News Release