Mars Global Surveyor Snaps a Picture of Earth

Image credit: NASA

Ever wondered what the Earth would look like seen through a small telescope on Mars? Currently in orbit around the Red Planet, NASA’s Mars Global Surveyor took pictures of the Earth and Jupiter on May 8th, when they were aligned in the Martian sky. The image shows our planet in a “half-Earth” phase, and was processed so that both Earth and Moon are visible in the picture. The photograph shows Jupiter as well, including three of its brightest satellites.

What does Earth look like when viewed from Mars? At 13:00 GMT on 8 May 2003, the Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) had an opportunity to find out. In addition, a fortuitous alignment of Earth and Jupiter—the first planetary conjunction viewed from another planet—permitted the MOC to acquire an image of both of these bodies and their larger satellites. At the time, Mars and the orbiting camera were 139 million kilometers (86 million miles) from Earth and almost 1 billion kilometers (nearly 600 million miles) from Jupiter. The orbit diagram, above, shows the geometry at the time the images were obtained.

Because Jupiter is over 5 times farther from the Sun than Earth, two different exposures were needed to image the two planets. Mosaiced together, the images are shown above (top picture). The composite has been highly contrast-enhanced and “colorized” to show both planets and their satellites. The MGS MOC high resolution camera only takes grayscale (black-and-white) images; the color was derived from Mariner 10 and Cassini pictures of Earth/Moon and Jupiter, respectively, as described in the note below.

Earth/Moon: This is the first image of Earth ever taken from another planet that actually shows our home as a planetary disk. Because Earth and the Moon are closer to the Sun than Mars, they exhibit phases, just as the Moon, Venus, and Mercury do when viewed from Earth. As seen from Mars by MGS on 8 May 2003 at 13:00 GMT (6:00 AM PDT), Earth and the Moon appeared in the evening sky. The MOC Earth/Moon image has been specially processed to allow both Earth (with an apparent magnitude of -2.5) and the much darker Moon (with an apparent magnitude of +0.9) to be visible together. The bright area at the top of the image of Earth is cloud cover over central and eastern North America. Below that, a darker area includes Central America and the Gulf of Mexico. The bright feature near the center-right of the crescent Earth consists of clouds over northern South America. The image also shows the Earth-facing hemisphere of the Moon, since the Moon was on the far side of Earth as viewed from Mars. The slightly lighter tone of the lower portion of the image of the Moon results from the large and conspicuous ray system associated with the crater Tycho.

Jupiter/Galilean Satellites: When Galileo first turned his telescope toward Jupiter four centuries ago, he saw that the giant planet had four large satellites, or moons. These, the largest of dozens of moons that orbit Jupiter, later became known as the Galilean satellites. The larger two, Callisto and Ganymede, are roughly the size of the planet Mercury; the smallest, Io and Europa, are approximately the size of Earth’s Moon. This MGS MOC image, obtained from Mars orbit on 8 May 2003, shows Jupiter and three of the four Galilean satellites: Callisto, Ganymede, and Europa. At the time, Io was behind Jupiter as seen from Mars, and Jupiter’s giant red spot had rotated out of view. This image has been specially processed to show both Jupiter and its satellites, since Jupiter, at an apparent magnitude of -1.8, was much brighter than the three satellites.

Original Source: MSSS News Release

MARS-1 Humvee Rover Arrives at Devon Island

Image credit: Mars Institute

The Mars Institute confirmed today that the MARS-1 Humvee Rover successfully crossed the frozen Wellington Channel reaching NASA Haughton-Mars Project on Devon Island. The odd-looking vehicle is a converted Humvee military ambulance with widened tracks for the snow, and will be equipped with scientific equipment for exploring the region. Devon Island, in the Canadian Arctic, is barren and remote and makes a great testing ground for learning what it will take to send a human mission to Mars.

The Mars Institute today announced that its MARS-1 Humvee rover has reached Devon Island in the Canadian high Arctic after successfully crossing the Wellington Channel, a 23 mile (37 km) stretch of treacherous sea ice separating Cornwallis Island from Devon Island at 75?N. The vehicle was driven and escorted by a team of four expeditioners led by Dr Pascal Lee, Project Lead for the NASA Haughton-Mars Project (HMP) and Chairman of the Mars Institute.

“We are very happy everything went well,” said Lee. The successful arrival of the rover on Devon Island represents an important milestone in the research effort Lee and his colleagues on the HMP have developed in the Arctic since 1997. “The MARS-1 Humvee rover is a powerful new tool for our scientific investigations on Devon. It will serve as a long-distance roving field lab and will also allow us to study the design and operation of future large pressurized rovers for the human exploration of the Moon and Mars”.

The distinctive orange MARS-1 Humvee rover is a unique experimental field exploration vehicle modified for the HMP by AM General, manufacturer of the famous High Mobility Multi-purpose Wheeled Vehicle (HMMWV) or Humvee. The refurbished four-wheel-drive all-terrain rover rolled out of AM General’s plant in Mishiwaka, Indiana, on May 14, 2002, bearing the one-of-a-kind serial number “MARS-1”. The vehicle configuration is based on a military ambulance HMMWV. To increase traction and tread lightly, the MARS-1 is equipped with wide tracks manufactured by Mattracks, Inc. The MARS-1 reached Resolute Bay on Cornwallis Island, high Arctic, the starting point of the expedition, on a C-130 transport plane of the United States Marine Corps.

“This rover will be a mobile all-terrain laboratory from which we will be able to access and deliver data as we go about our scientific field work on Devon Island. From that experience, we’ll learn how to do the same thing for planetary exploration” said Dr. Stephen Braham of Simon Fraser University (SFU), Vancouver, British Columbia, Chief Field Engineer and Canadian Principal Investigator for the HMP. Dr. Braham will lead a Canadian Space Agency (CSA) funded research program under the SFU-led MarsCanada CSA Support Study, totaling C$272,000, to develop the advanced power, computing, and communications systems for MARS-1, as a study of the technologies required for future robotic and crewed Mars rovers.

In addition to Lee who has spent five summers and a winter in Antarctica and was leading his eighth Arctic expedition, the team of four in the successful crossing comprised Mr. John W. Schutt, a veteran field guide of over thirty Arctic and Antarctic scientific research expeditions, and Mr. Joe Amarualik and Mr. Paul Amagoalik, two Inuit residents of Resolute Bay and highly experienced experts in Arctic land and sea travel working as a two-brother team. Joe Amarualik is a Master Corporal in the Resolute Bay Patrol of the Canadian Rangers, and Paul Amagoalik an expert in Arctic resources.

The team left Resolute Bay at 9:30 pm CDT on May 10, 2003, driving the MARS-1 and three snowmobiles with traditional Inuit komatik sleds on tow. After a 6-hour overland traverse under the midnight sun, they reached Read Bay on the east coast of Cornwallis Island (75?02’N, 94?36’W) and rested for the “night” inside the rover. The next day, May 11 at 3:30 pm CDT, the 8800 lb (4 metric ton) MARS-1 ventured onto the rugged sea ice off Read Bay, only to touch land again 3.5 hours later 23 miles (35 km) to the East, at Cape McBain, on the west coast of Devon Island (75?04’N, 92?13’W). The rover was driven in shifts by Lee and Schutt, both of whom received formal training in the operation and maintenance of military Humvees at the AM General plant prior to this Arctic trek.

“Things have come a long way since the ill-fated Franklin Expedition explored this area in the 1840s in search of the Northwest Passage. We planned our expedition carefully, but the Arctic remains an unforgiving environment and there was always some concern that disaster might befall us as well” said Schutt who, when not in the Arctic with the NASA HMP, is chief field guide for the National Science Foundation Antarctic Search for Meteorites (ANSMET) program. A geologist and experienced ice expert, Schutt was a member of the team that recovered the now-famous ALH84001 meteorite thought by some scientists to contain possible evidence of past life on Mars.

Original Source: Mars Institute News Release

Countdown for Mars Express Begins

Image credit: ESA

Controllers at the European Space Agency officially began the countdown clock for the launch of the Mars Express spacecraft today. If everything goes according to plan, the spacecraft will launch from the Baikonur cosmodrome in Kazakhstan on June 2, and it will arrive at Mars around December 25th. On board the spacecraft is the Beagle 2 lander, which will search for signs of past and present life on the surface of Mars.

On 2 June 2003, the first European mission to Mars will be launched. It will also be the first fully European mission to any planet. Mars Express has been designed to perform the most thorough exploration ever of the Red Planet.

Mars Express has the ambitious aim of not only searching for water, but also understanding the ‘behaviour’ of the planet as a whole. But maybe the most ambitious aim of all – Mars Express is the only mission in more than 25 years that dares to search for life.

Mars has always fascinated human beings. No other planet has been visited so many times by spacecraft. It has not been easy to unveil its secrets. Martian mysteries seem to have increased in quantity and complexity with every mission. When the first spacecraft were sent – the Mariner series in 1960s – the public was expecting an Earth ?twin?, a green, inhabited planet full of oceans. Mariner shattered this dream by showing a barren surface. This was followed by the Viking probes which searched for life unsuccessfully in 1976. Mars appeared dry, cold and uninhabited: the Earth?s opposite.

Now, two decades later, modern spacecraft have changed that view, but they have also returned more questions. Current data show that Mars was probably much warmer in the past. Scientists now think that Mars had oceans, so it could have been a suitable place for life in the past.

Cracks on Mars suggest the presence of water
“We do not know what happened to the planet in the past. Which process turned Mars into the dry, cold world we see today?” says Agustin Chicarro, ESA’s Mars Express project scientist. “With Mars Express, we will find out. Above all, we aim to obtain a complete global view of the planet – its history, its geology, how it has evolved. Real planetology!”

Mars Express will reach the Red Planet by the end of December 2003, after a trip of just over six months. Six days before injection into its final orbit, Mars Express will eject the lander, Beagle 2, named after the ship on which Charles Darwin found inspiration to formulate his theory of evolution. The Mars Express orbiter will observe the planet and its atmosphere from a near-polar orbit, and will remain in operation for at least a whole Martian year (687 Earth days). Beagle 2 will land in an equatorial region that was probably flooded in the past, and where traces of life may have been preserved.

The Mars Express orbiter carries seven advanced experiments, in addition to the Beagle 2 lander. The orbiter’s instruments have been built by group of scientific institutes from all over Europe, plus Russia, the United States, Japan and China. These instruments are a subsurface sounding radar; a high-resolution camera, several surface and atmospheric spectrometers, a plasma analyzer and a radio science experiment.

The high-resolution camera will image the entire planet in full colour, in 3D, at a resolution of up to 2 metres in selected areas. One of the spectrometers will map the mineral composition of the surface with great accuracy.

The missing water
Data from some of the instruments will be key to finding out what happened with the water which was apparently so abundant in the past. For instance, the radar altimeter will search for subsurface water and ice, down to a depth of a few kilometres. Scientists expect to find a layer of ice or permafrost, and to measure its thickness.

Other observations with the spectrometers will determine the amount of water remaining in the atmosphere. They will also tell whether there is a still a full ‘water cycle’ on Mars, for example how water is deposited in the poles and how it evaporates, depending on the seasons.

“These data will determine how much water there is left. We have clear evidence for the presence of water in the past, we have seen dry river beds and sedimentary layers, and there is also evidence for water on present-day Mars. But we do not know how much water there is. Mars Express will tell us,” says Chicarro.

The search for life
The instruments on board Beagle 2 will investigate the geology and the climate of the landing site. But, above all, it will look for signs of life.

Contrary to the Viking missions, Mars Express will search for evidence for both present and past life. Scientists are now more aware that a few biological experiments are not enough to search for life – they will combine many different types of tests to help discard contradictory results.

To ‘sniff’ out direct evidence of past or present biological activity, Beagle 2’s ‘nose’ is a gas analysis package. This will determine whether carbonate minerals, if they exist on Mars, have been involved in biological processes. Beagle?s nose will also detect gases such as methane, which scientists believe can only be produced by living organisms.

Beagle 2 will also be able to collect samples from below the surface, whether under large boulders or within the interiors of rocks – places that the life-killing ultraviolet radiation from the Sun cannot reach. These samples will be collected with a probe called the ‘mole’, which is able to crawl short distances across the surface, at about 1 centimetre every six seconds, and to dig down to 2 metres deep.

Mars Express will add substantial information to the international effort to explore Mars. “Mars Express is crucial for providing the framework within which all further Mars observations will be understood,” says Chicarro.

The Mars Express spacecraft is now in Baikonur, Kazakhstan, being prepared for its launch in early June 2003.

Original Source: ESA News Release

NASA Orders Prototype Martian Airplane

After a series of successful tests with a half-sized prototype, NASA has ordered a full-scale prototype of the Ares (Aerial Regional-scale Environmental Survey of Mars), aircraft, designed to help explore the surface of Mars. If all goes well, the aircraft will be launched to Mars in 2007. When it arrives in 2008, it will enter the atmosphere, deploy its wings and fly 850 kilometres along a route that takes it past the terrain that NASA scientists want to observe.

Mars Rover Delayed to Fix Glitch

NASA engineers will need to disassemble both of their Mars rovers to fix an electrical device which could have caused a catastrophic short circuit later in the mission. This delay will push the launch of the first rover a week to no earlier than June 6, with the second launching two weeks later as scheduled. The twin rovers will perform a series of geologic experiments on Mars to search for evidence of past water.

Where Should the Next Martian Rovers Land?

Image credit: NASA

With only a few months to go before NASA launches its next two rovers to Mars, mission planners need to pin down exactly where they want the robot explorers to touch down. The twin Mars Exploration Rovers are scheduled for launch in May and June of 2003, and they currently have four candidate landing locations picked out – each of which offers unique terrain to explore. The final decision will be made in April.

The launch dates for the two Mars Exploration Rovers are getting closer and so is the need to pick a place for them to land.

Adventurous travelers might spin a globe and pick a vacation based on whichever spot their finger finds. But scientists and engineers working on NASA’s newest rover mission cannot be as casual about landing site choices for the twin rovers that will launch in May and June of this year.

Last week, team members and others from the scientific community met for a final chance to discuss and fine-tune the pros and cons of each of the four landing site contenders.

Images and data from two other NASA spacecraft currently orbiting the red planet — Mars Global Surveyor and Mars Odyssey — have provided invaluable information on possible landing sites.

“This is a unique period where we have orbital missions that can help us make the selection,” said Dr. Matt Golombek, JPL landing site scientist. “We want to go to sites with terrains that will challenge our minds but not the safety of the rovers.”

Since the rovers do not have the luxury of landing on a well-paved runway, JPL geologists and engineers must carefully choose an area without large rocks that could damage the rovers’ airbag landing system. Also, an area that is too densely populated with rocks of any size could prevent the rover from moving freely. Winds in the lower atmosphere are also an important consideration, as are the slopes the airbag-clad lander impact against.

Adequate exposure to the sun is vital for the solar-powered rovers. Geologists have chosen sites near the equator where there is sufficient sunlight. The sites are also relatively free of accumulations of iron-oxide dust particles that can coat solar panels and interfere with the rovers’ mobility.

Like the final four in any competition, each of the four Mars candidates is a potential winner.

“Three of the sites, Terra Meridiani, known as the Hematite site, Gusev, and Isidis show evidence for surface processes involving water. These sites appear capable of addressing the science objectives of the rover missions: to determine if water was present on Mars and whether there are conditions favorable to the preservation of evidence for ancient life,” said Golombek.

The fourth site, Elysium, appears to contain ancient terrain, which may hold clues to Mars’ early climate when conditions may have been wetter.

Over the next several months, geologists and engineers will continue to analyze the viability of each site. The final decision will be made by NASA in April, shortly before the rovers begin their journey to Mars.

Original Source: NASA/JPL News Release

Gullies on Mars Not Formed by Water?

Gullies on Mars were discovered in 2001 that seemed to show evidence that liquid water had been on the surface of the planet very recently. But a theory from a University of Melbourne geologist examines the possibility that the gullies were carved by an avalanche of carbon dioxide changing directly from a solid to a gas. This theory has been met with skepticism from other Mars researchers, who are hoping that liquid water might someday be found on Mars, increasing the possibility of finding life.

An Australian geologist has identified what could be the first ever active flow of fluids through gullies on Mars.

University of Melbourne geologist, Dr Nick Hoffman, identified recent gully and channel development near the polar regions of Mars from images taken by the Mars Global Surveyor spacecraft. But contrary to the majority of scientific opinion which suggests that such features were carved by liquid water, Hoffman says the flow is most likely frozen carbon dioxide.

NASA is desperate to find signs of liquid water on Mars so they have a target for the next generation of Mars landers and rovers to go and search for life, but their search could prove fruitless if Hoffman’s analysis of the images is correct.

In the latest edition of the journal Astrobiology, Hoffman presents evidence for the flow events on Mars and demonstrates that there are substances other than water that can flow on Mars and that water is probably the least likely substance to do this. Hoffman says the channels he identified from the Surveyor images are more likely being carved by avalanches of carbon dioxide and associated debris.

“The consequences of this for life on Mars are shattering. If similar mechanisms are responsible for all the recent gullies on Mars then the near surface life NASA is so desperately searching for may not exist,” says Hoffman.

“Without liquid water there cannot be life and despite recent reports of more and more ice on the Red Planet, NASA has yet to find liquid water,” he says.

Many NASA scientists are doubtful about Hoffman’s observations, but at a meeting of the American Geophysical Union held last month, Hoffman says they struggled to find arguments against the evidence he presented.

The Mars Gullies were discovered in 2001. Hoffman’s analysis of the recent images shows that a patch of gullies near the South Pole shows signs of annual flow activity each Martian Spring.

“In itself the observation of active flows is a dramatic discovery since no movement has yet been seen on Mars, except for some dry dust avalanches. The gullies are thought to be the most promising candidates for liquid water flows on modern Mars and many NASA researchers are suggesting ways in which they might be formed by liquid water, but nobody has yet seen the gullies in action,” says Hoffman.

Hoffman suggests NASA researchers missed these most exciting events happening in the gullies as they have been focussed on looking for liquid water in late summer.

“In the Martian Spring, when carbon dioxide frost and snow at temperatures of minus130 degrees Centigrade still fill the valleys, flow events are occurring. The flows cut through the frost at temperatures that would turn battery acid into building stone,” he says.

“Nothing based on water can flow at these temperatures, so the culprit must be defrosting carbon dioxide.

“But carbon dioxide doesn’t melt on Mars; it boils directly from the solid (a process called ‘sublimation’). Instead of a trickle or gush of liquid pouring down the gully, the flow appears to be a flurry of boiling dry ice avalanching down the gully. The boiling dry ice acts like a amarda of miniature hovercraft carrying a shower of sand, dust, and tumbling rocks down the slope, carving out the gullies as it goes.

Original Source: University of Melbourne News Release

Keeping Mars Clean of Earth Bugs

Image credit: ESA

One concern engineers have when designing space missions is how to ensure our spacecraft don’t bring along unexpected microorganisms when they reach a distant planet. There are strict international rules to avoid contamination, so engineers use several techniques to keep their spacecraft clean: sterilization through heat, vacuum, alcohol, irradiation with ultraviolet light and other kinds of radiation. Once they’re done, engineers hope to have less than 300,000 microorganisms in the Beagle 2, due for launch in 2003. That sounds like a lot, but there are several billion wee beasties on even the cleanest kitchen floor.

When packing for a trip towards another planet, there are some things, such as microorganisms, that you do not want to include in your ‘luggage’. For example, what if extraterrestial life is finally detected on Mars, and scientists realise afterwards that such life is actually terrestrial?

Fortunately, there are strict international rules to avoid the contamination of Solar System bodies with biological material from Earth. Landers, for example, may present a special danger to the objects they set down on. The European Space Agency (ESA) is well aware of this. ESA’s missions, such as Mars Express, with its lander Beagle 2, Rosetta, which will land on a comet, and Cassini-Huygens, headed towards Saturn and its moon Titan, will be ‘clean’ and responsible visitors. The strictest of procedures will ensure that they carry only highly sterilised landers.

Cassini (with Huygens on-board) left Earth in 1997 and is travelling towards the planet Saturn. In 2004, Huygens will separate from the spacecraft and land on its own on Saturn’s largest moon, Titan. Titan is a highly promising site for the scientists because its atmosphere very much resembles that of primitive Earth. It is a very cold place, with temperatures down to -180?C. Many scientists think such freezing temperatures are precisely the reason why life never arose on Titan. However, Huygens may well give them reasons to reconsider.

Rosetta and Mars Express will be launched in 2003. Rosetta is ESA’s comet-chaser. It will spend 8 years travelling through the Solar System and in 2011 it will land on Comet 46 P/Wirtanen, making Rosetta the first spacecraft ever to land on a comet. Mars Express is the next mission to Mars and the first European one. It will arrive on the Red Planet in December 2003 and release its lander Beagle 2, whose task, among others, is to search for evidences of Martian life.

These diverse projects all have something in common. They have all had to take into account the ‘planetary protection’ requirements set by the international scientific organisation, Committee on Space Research (COSPAR).

“We don’t want to contaminate the planets we go to,” says John Bennett, of ESA’s Mars Express team and one of the scientists responsible for ‘protecting’ the Red Planet from an undesired terrestrial invasion. “We don’t want future missions to detect contamination, instead of life.”

COSPAR rules determine a spacecraft’s degree of cleanliness. Standards vary depending on both the type of mission and its ‘destiny’. For example, from a contamination point of view, landers are obviously more ‘dangerous’ than orbiters. Moreover, the more likely a planet is considered to bear life, the stricter the requirements are.

For these reasons, rules are especially tough for Mars Express’s lander, Beagle 2. Scientists set sterilisation criteria of 300 microorganisms per square metre for missions to Mars in the past. At this level, no life was detected and they concluded that this sterilisation level would not compromise or affect biological measurements. Beagle 2 will have to be sterilised to contain less than 300 microorganisms per square metre at launch, and no more than 300 000 inside the whole launcher. By comparison, the floor of even the cleanest kitchen inside a house on Earth has several thousands of millions of microorganisms present.

The sterilisation process is quite complicated. Many of the instruments’ components are very delicate and would not withstand very high temperatures, so scientists use different techniques. They will heat most of the components of Beagle 2 to 120?C and clean other components chemically. For the solar panels, for example, an alcohol will be used. The microelectronics components will be placed in a vacuum chamber with a special gas, hydrogen peroxide plasma, that oxidises biological material, making it harmless. Scientists will also use another sterilising technique, irradiation with ultraviolet light and other kinds of radiation. Sterilisation will affect all parts of the lander, even the airbags and the parachute system the lander uses to reach the ground safely.

For Beagle, the process will take place in several facilities in the United Kingdom. Special transportation systems will take each component to a specially built clean room where they will be assembled on location at the Open University site in the United Kingdom. Assembly will begin this summer. Once finished, the ultraclean Beagle 2 will be ‘sealed’ within its own front-shield and back-cover, and made ready to be mounted on Mars Express.

Requirements for Rosetta and Huygens are less strict. When Cassini-Huygens was launched in 1997, scientists thought that life was simply too unlikely to exist on the cold Titan. They therefore labelled the project low risk, with no sterilisation procedures considered necessary. However, according to COSPAR rules, the spacecraft was assembled in a clean room, that is, with less than 100 000 particles per unit of volume.

Rosetta is a similar case. “Sterilisation is generally not crucial since comets are usually regarded as objects where you can find prebiotic molecules, that is, molecules that are precursors of life, but not living microorganisms,” explains Gerhard Schwehm, Rosetta’s Project Scientist. On the other hand, Rosetta has to perform delicate experiments on the comet and scientists do not want the results to be spoiled, so cleanliness is required.

Original Source: ESA News Release

Ferrari Paint will Fly to Mars

Image credit: ESA

In a silly publicity stunt, Ferrari engineers have decided to see just how fast their paint can go. When the European Space Agency’s Mars Express spacecraft launches in May/June 2003, it may be carrying a tiny glass ball painted with Ferrari’s signature red paint. When Mars Express arrives at the Red Planet in December, the whole spacecraft (including the paint) will endure tremendous heat as it aerobrakes in the planet’s atmosphere.

What is the fastest Ferrari’s distinctive red paint has ever travelled? Next year it will be 10800 km/h! Mars Express, to be launched in May/June 2003, the first European spacecraft to visit the Red Planet, will be speeding on its way accompanied by the very essence of Ferrari: a sample of its distinctive red paint.

Mars has always fascinated us here on Earth. The European Space Agency’s Mars Express mission, due to arrive at its destination by December 2003, aims to solve many of the planet’s age-old mysteries. It will ultimately be looking for the presence of water on Mars, but might also find evidence of life, both past and present. And, of course, it will be studying the red soil in depth.

Following the outstanding success of the Scuderia Ferrari with the victory of Michael Schumacher’s fifth Formula 1 driver championship title, the Ferrari team has agreed to fly the symbol of that success on the Mars Express mission. Ferrari’s high-tech red paint is recognised all over the world as being synonymous with the record-breaking marque.

When Mars Express is launched next May/June, the Ferrari red paint will be on board in a specially constructed glass globe measuring 2cm in diameter, designed to withstand the extremes of temperature it will encounter on its trip to Mars. The spacecraft will be launched on a Soyuz/Fregat launcher, reaching speeds of roughly 10800 kilometres per hour, nearly 10 times the speed of sound!

The paint is currently undergoing rigorous tests at ESA’s test centre in the Netherlands to discover how it will withstand space conditions on the journey. Once it has been officially “space-qualified”, it is due to be installed on the spacecraft at a formal ceremony in September.

Original Source: ESA News Release

Russians Propose Human Mars Mission

Russian space officials have announced their intentions to send human explorers to Mars by 2015. Hoping for International support to help fund the $20 billion budget, managers have already planned out the mission basics. They’re estimating that two ships would travel to Mars and deliver three people to the surface for 440 days while three others would remain in orbit. Obviously this is completely preliminary in nature, and officials from NASA or the ESA have yet to comment if they would support this Russian initiative.