Eureka! Kola Fireball Meteorites Found in Russia

A spectacular fireball that crackled across the sky near the Russia-Finnish border on April 19th this year left more than a bright flash. A team of meteor researchers from Finland, Russia and the Czech Republic scoured the predicted impact zone and recently discovered extraterrestrial booty.

A 120 gram fragment of the Annama meteorite. Streamlines of molten material heated during atmospheric entry can be seen on the crust. Credit: Jakub Haloda
A 120 gram fragment (left) of the Annama meteorite found on May 29, 2014. Streamlines of molten material heated during atmospheric entry can be seen on the crust. At right, a 48g fragment found on the following day. Credit: Jakub Haloda (left) and Grigory Yakovlev

There’s a lot of excitement about the fall because it’s the first time a meteorite was found based on coordinated all-sky camera network observations by the Ursa Finnish Fireball Network.  Esko Lyytinen of the network with help from Jarmo Moilanen and Steinar Midtskogen reconstructed the meteoroid’s trajectory and dark flight (when it’s no longer luminous but yet to strike the ground) using simulations based on photos, videos and eyewitness reports. 

Kola fireball meteors ended up near the Russian-Norwegian border. The fireball trajectory Esko Lyytinen of Ursa modeling of Heaven, watch videos on the findings and Murmansk.
Kola fireball meteors fell near the Russian-Norwegian border. The
fireball trajectory was modeled  byEsko Lyytinen of the Ursa Finnish Fireball Network. Credit: Kuva Mikko Suominen / Celestia with info boxes translated by the author

The initial mass of meteoroid is estimated at about 1,100 pounds (500 kg). Much of that broke apart in the atmosphere and fell harmlessly as smaller stones. An international team of scientists mounted a 5-day expedition in late May after snow melt and before green up to uncover potential space rocks in the strewnfield, the name given to the oval-shaped zone where surviving fragments pepper the ground. 

Russian amateur astronomer Nikolai Kruglikov discovered the first fragment of Annama meteorite on May 29, 2014 in the middle of a dirt road. Credit: Tomas Kohout
Russian amateur astronomer Nikolai Kruglikov discovered the first meteorite fragment in the middle of a dirt road. Credit: Tomas Kohout

On May 29, 2014, first 120 gram (4.2 ounce) meteorite fragment was found by Nikolai Kruglikov of Russia’s Ural Federal University on a forest road within the predicted impact area. The crew had been searching 1o hours a day when Kruglikov stopped the car to check out a suspect rock:

 “Suddenly he started dancing and yelling. At first I could hardly believe it was a true discovery, but then I checked the composition of the rock using my instrument”, said Tomas Kohout, University of Helsinki physicist who participated in the hunt. The fusion-crusted stone displayed classic flow features from melting rock during high-speed atmospheric entry.

The very next day a second 48 gram crusted meteorite popped up. More are undoubtedly out there but the heavy brush numerous lakes make the finding challenging. 

The crew is calling the new arrival the ‘Annama meteorite’ as it fell near the Annama River in Russia about 62 miles west of Murmansk.  The Czech Geological Survey examined the space rocks and determined them to be ordinary chondrites representing the outer crust of an asteroid that got busted to bits in a long-ago collision. More than 95% of stony meteorites fall into this category including the 2013 fireball of Chelyabinsk, Russia. 

 


Dashcam video of the brilliant fireball that dropped the ‘Annama meteorites’

“The Kola fireball is a rarity – it is one of only 22 cases where it was possible to determine its pre-impact solar system orbit before the impact with Earth’s atmosphere,” says Maria Gritsevich of the Finnish Geodetic Institute. “Knowing where the meteorite originates will help us better understand the formation and evolution of the solar system.” Congratulations Ursa!

How to Find Your Way Around the Milky Way This Summer

Look east on a dark June night and you’ll get a face full of stars. Billions of them. With the moon now out of the sky for a couple weeks, the summer Milky Way is putting on a grand show. Some of its members are brilliant like Vega, Deneb and Altair in the Summer Triangle, but most are so far away their weak light blends into a hazy, luminous band that stretches the sky from northeast to southwest. Ever wonder just where in the galaxy you’re looking on a summer night? Down which spiral arm your gaze takes you? 

Artist's conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Artist’s conception of the Milky Way galaxy based on the latest survey data from ESO’s VISTA telescope at the Paranal Observatory. A prominent bar of older, yellower stars lies at galaxy center surrounded by a series of spiral arms. The galaxy spans some 100,000 light years. Credit: NASA/JPL-Caltech, ESO, J. Hurt
Two different perspectives on our galaxy to help us better understand its shape. A face-on artist's view at left reveals the core and arms. At right, we see a  photo of the Milky Way in infrared light by the Cosmic Background Explorer probe showing us an edge-on perspective, the view we're 'stuck with' but dint of orbiting inside the galaxy's flat plane. Credit: NASA/JPL et. all (left) and NASA
Two different perspectives on our galaxy help us better understand its shape. A face-on artist’s view at left reveals the core, spiral arms and the sun’s position. At right, we see an edge-on perspective photographed by the Cosmic Background Explorer probe. Because the sun and planets orbit in the galaxy’s plane, we’re ‘stuck’ with an edge-on view until we build a fast-enough rocket to take us above our galactic home. Credit: NASA/JPL et. all (left) and NASA

Because all stars are too far away for us to perceive depth, they appear pasted on the sky in two dimensions. We know this is only an illusion. Stars shine from every corner of the galaxy,  congregating in its bar-shaped core, outer halo and along its shapely spiral arms. The trick is using your mind’s eye to see them that way.

Employing optical, infrared and radio telescopes, astronomers have mapped the broad outlines of the home galaxy, placing the sun in a minor spiral arm called the Orion or Local Arm some 26,000 light years from the galactic center. Spiral arms are named for the constellation(s) in which they appear. The grand Perseus Arm unfurls beyond our local whorl and beyond it, the Outer Arm. Peering in the direction of the galaxy’s core we first encounter the Sagittarius Arm, home to sumptuous star clusters and nebulae that make Sagittarius a favorite hunting ground for amateur astronomers.

Further in lies the massive Scutum-Centaurus Arm and finally the inner Norma Arm. Astronomers still disagree on the number of major arms and even their names, but the basic outline of the galaxy will serve as our foundation. With it, we can look out on a dark summer night at the Milky Way band and get a sense where we are in this magnificent celestial pinwheel.

The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is located in the direction of the constellation Sagittarius.  Stellarium
The Milky Way band arches across the east and south as seen about 11:30 p.m. in mid-late June. The center of the galaxy is in the direction of the constellation Sagittarius. The dark ‘rift’  that appears to cleave the Milky Way in two is formed of clouds of interstellar dust that blocks the light of stars beyond it. Stellarium

We’ll start with the band of the Milky Way  itself. Its ribbon-like form reflects the galaxy’s flattened, lens-like profile shown in the edge-on illustration above. The sun and planets are located within the galaxy’s plane (near the equator) where the stars are concentrated in a flattened disk some 100,000 light years across. When we look into the galaxy’s plane, billions of stars pile up across thousands of light years to create a narrow band of light we call the Milky Way. The same term is applied to the galaxy as a whole.

Since the average thickness of the galaxy is only about 1,000 light years, if you look above or below the band, your gaze penetrates a relatively short distance – and fewer stars – until entering intergalactic (starless) space. That why the rest of the sky outside of the Milky Way band has so few stars compared to the hordes we see within the band.

Here’s the galactic big picture showing the outline of the galaxy with constellations added. In this edge-on view, we see that the summertime Milky Way from Cassiopeia to Sagittarius includes the central bulge (in the direction of Sagittarius) and a hefty portion of  one side of the flattened disk:

The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy's center. This is the section we see crossing the eastern sky in June and includes the galactic center. Click to enlarge. Credit: Richard Powell with additions by the author
The outline of the Milky Way viewed edge-on is shown in gray. The yellow box includes the summer portion of the Milky Way from Cassiopeia to Scorpius with a red dot marking the galaxy’s center. This is the section we see crossing the eastern sky in June. Click to enlarge. Credit: Richard Powell with additions by the author

If you enlarge the map, you’ll see lines of galactic latitude and longitude much like those used on Earth but applied to the entire galaxy.  Latitude ranges from +90 degrees at the North Galactic Pole to -90 at the South Galactic Pole. Likewise for longitude. 0 degrees latitude, o degrees longitude marks the galactic center. The summer Milky Way band extends from about longitude 340 degrees in Scorpius to 110 in Cassiopeia.

Now that we know what section of the Milky Way we peer into this time of year, let’s take an imaginary rocket journey and see it all from above:

Viewed from above, we can now see that our gaze takes across the Perseus Arm (toward the constellation Cygnus), parts of the Sagittarius and Scutum-Centaurus arms (toward the constellations  Scutum, Sagittarius and Ophiuchus) and across the central bar. Interstellar dust obscures much of the center of the galaxy. Credit: NASA et. all with additions by the author.
Viewed from above, we can now see that our gaze (red arrows) reaches down the Perseus Arm (toward the constellation Cygnus) and across the Sagittarius and Scutum-Centaurus arms (toward the constellations Scutum, Sagittarius and Ophiuchus) and directly into the central bar. Interstellar dust obscures much of the center of the galaxy. Blue arrows show the direction we face during the winter months. Credit: NASA et. all with additions by the author.

Wow! The hazy arch of June’s Milky Way takes in a lot of galactic real estate. A casual look on a dark night takes us from Cassiopeia in the outer Perseus Arm across Cygnus in our Local Arm clear over to Sagittarius, the next arm in. Interstellar dust deposited by supernovae and other evolved stars obscures much of the center of the galaxy. If we could vacuum it all up, the galaxy’s center  – where so many stars are concentrated – would be bright enough to cast shadows.

A view showing the summer Milky Way from mid-northern latitudes with three constellations and the spiral arms to which they belong. Stellarium
A view showing the summer Milky Way from mid-northern latitudes with three prominent constellations and the spiral arms we peer into when we face them.  Stellarium

Here and there, there are windows or clearings in the dust cover that allow us to see star clouds in the Scutum-Centaurus and Norma Arms. In the map, I’ve also shown the section of Milky Way we face in winter. If you’ve ever compared the winter Milky Way band to the summer’s you’ve noticed it’s much fainter. I think you can see the reason why. In winter, we face away from the galaxy’s core and out into the fringes where the stars are sparser.

Look up the next dark night and contemplate the grand architecture of our home galaxy. If you close your eyes,  you might almost feel it spinning.

50 Amazing Facts About Earth

Do you know how much material falls onto Earth from space every day? How many different species there are in the ocean? How far the continents move every year? In honor of Earth Day here’s a very cool infographic that answers those questions about our planet — and 47 more!

Check out the full version below:

50-facts-about-earth3 (1)

And for more interesting information about our planet, click here and here.

Infographic provided by Giraffe Childcare and Early Learning (Dublin, Ireland)