Book Review: The Apollo Guidance Computer

The Apollo Guidance Computer hasa lot to offer many different types of readers. Photo Credit: Springer/Praxis

[/caption]
Springer/Praxis has produced a small library’s worth of books about the Apollo Program. A recent offering from the publisher focuses in on the Apollo Guidance Computer. This topic, for the uninitiated, can be more than a little intimidating and if it is handled wrong veer off the path of a book about space flight and toward a pure “tech” book. This is not a problem that Springer/Praxis’ offering The Apollo Guidance Computer has, the book is well rounded, in-depth and easy-to-read.

Written by Frank O’Brien, The Apollo Guidance Computer is a thorough review of the computer system used during the Apollo missions. The Apollo Guidance Computer rings in at a whopping 430 pages – most readers will likely only pick out certain parts of the book to read. The book is, in a number of ways, many separate books in one – with details of the guidance computer, its development, the requirements to send astronauts to and from the Moon as well as the challenges that the engineers face in developing this revolutionary piece of equipment – all detailed within.

The book starts out by turning the clock back about 50 years to allow the reader to see what technology was like half a century ago. During this time period computers generally filled an entire room. This (obviously) was not possible in the case of Apollo’s guidance computer – and The Apollo Guidance Computer works to detail that story.

As far as O’Brien is concerned, he sees the book as something that techies, looking to learn how this computer system was developed, and space buffs who are seeking to learn the various intricacies of traveling to the Moon – can both enjoy.

While fairly primitive by today's standards, the Apollo guidance computer was revolutionary for its time. Photo Credit: NASA/Dryden

“It’s a bit different from other books that are found in spaceflight libraries, in that it is appealing to two very different groups,” said O’Brien during a recent interview. “Sometimes I joke that those interested in computers read it from the beginning till the end – whereas space enthusiasts –read it from the end to the beginning.”

For his part O’Brien acknowledges that not all parts of the book will interest all people. He is fine with that as long as readers enjoy the elements of the book that relate to them. He does hope that all readers pick up on how designers managed to pack away so much capability into a very limited structure. There was no disk, tape, or secondary storage – of any kind.

The book works to provide a link to demonstrate how the Apollo guidance computer allowed for one of the greatest accomplishments in human history. It details how difficult the actual lunar landing was and how the computer system was instrumental in accomplishing this feat.

Whereas many of Springer/Praxis’ offerings detail flight aspects of the Apollo era, this text takes a look at one of the essential elements that made those missions possible. While other books provide understanding of the Apollo Program in the broadest of strokes – this book allows readers to see the moon shot’s finest details. It also provides context into the era in which this machine was developed. Only in the 60s could an entry code be entitled BURNBABY (as in “Burn Baby Burn!”).

Frank O'Brien, the author of "The Apollo Guidance Computer" spoke to Universe Today about his thoughts on the book. Photo Courtesy of Frank O'Brien

SpaceX Completes Crucial Milestone Toward Launching Astronauts

With the completion of the fourth CCDEV milestone, Space Exploration Technologies is one step closer to launching astronauts into orbit. Photo Credit: SpaceX

[/caption]

Space Exploration Technologies (SpaceX) is now one more step closer to sending astronauts to orbit. The commercial space firm announced today that it has completed a successful review of the company’s launch abort system (LAS). SpaceX’s LAS, dubbed “DragonRider” is designed differently than abort systems that have been used in the past.

The first review of the system’s design and its subsequent approval by NASA represents a step toward the realization of the space agency’s current objective of having commercial companies provide access to the International Space Station (ISS) while it focuses on sending astronauts beyond low-Earth-orbit (LEO) for the first time in four decades.

The DragonRider launch abort system would allow astronauts to be safely pulled away from the Falcon 9 launch vehicle in the advent of an emergency. Image Credit: SpaceX

“Each milestone we complete brings the United States one step closer to once again having domestic human spaceflight capability,” said former astronaut Garrett Reisman, who is one of the two program leads who are working on SpaceX’s DragonRider program.

With the space shuttle program over and its fleet of orbiters headed to museums, the United States is paying Russia an estimated $63 million per seat on its Soyuz spacecraft. SpaceX has estimated that, by comparison, flights on a man-rated version of its Dragon spacecraft would cost approximately $20 million. Despite the dramatically lower cost, SpaceX has emphatically stated that safety is one of the key drivers of its spacecraft.

NASA, who currently lacks the capacity to launch astronauts on its own, has to pay fellow space station program partner $63 million a seat on its Soyuz spacecraft. SpaceX has estimated by comparison that flights on a man-rated Dragon would cost around $20 million. Photo Credit: NASA.gov

“Dragon’s integrated launch abort system provides astronauts with the ability to safely escape from the beginning of the launch until the rocket reaches orbit,” said David Giger, the other lead on the DragonRider program. “This level of protection is unprecedented in manned spaceflight history.”

SpaceX had already met three of NASA’s milestones under the Commercial Crew Development (CCDev) contract that the company has signed into with the U.S. space agency. With the Preliminary Design Review or PDR completed of the abort system SpaceX can now rack up another milestone that it has met.

SpaceX is currently working to see that the next flight of its Dragon spacecraft tentatively scheduled for late this year will incorporate mission objectives of both the second and third COTS demonstration flights and be allowed to dock with the International Space Station. Image Credit: SpaceX

Unlike conventional abort systems, which are essentially small, powerful rockets that are attached to the top of the spacecraft, Dragon’s LAS is actually built into the walls of the Dragon. This is not an effort just to make the spacecraft’s abort system unique – rather it is meant as a cost-cutting measure. The Dragon is intended to be reusable, as such its abort system needed to be capable of being reused on later flights as well. Traditional LAS simply do not allow for that. With every successful launch by conventional means – the LAS is lost.

SpaceX is also working to see that this system not only can save astronaut lives in the advent of an emergency – but that it can actually allow the spacecraft to conduct pinpoint landings one day. Not just on Earth – but possibly other terrestrial bodies – including Mars.

SpaceX is hopeful that if all goes well with its DragonRider system that it could one deay be developed to land future versions of the company's spacecraft on other terrestrial bodies - including the planet Mars. Image Credit: SpaceX

To date, SpaceX has launched two of its Falcon 9 launch vehicles. The first occurred on June 4 of 2010 and the second, and the first under the Commercial Orbital Transportation Services (COTS) contract took place six months later on Dec. 8. This second mission was the first to include a Dragon spacecraft, which was recovered in the Pacific Ocean off the coast of California after successfully completing two orbits.

“We have accomplished these four milestones on time and budget, while this is incredibly important, it is business as usual for SpaceX,” said SpaceX’s Vice-President for Communications Bobby Block during an interview. “These are being completed under a Space Act Agreement that demonstrates the innovative and efficient nature of what can be accomplished when the commercial sector and NASA work together.”

SpaceX's Vice-President for Communications, Bobby Block, said that the fact that SpaceX has accomplished these milestones on time and budget should show what can happen when NASA and the private industry work together. Photo Credit: Alan Walters/awaltersphoto.com

Stage Set For SpaceX to Compete for Military Contracts

NASA, the NRO and the U.S. Air Force have signed an agreement that could see smaller space firms competing for large military contracts. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
The United States Air Force has entered into a Memorandum of Understanding or MOU with the National Reconnaissance Office (NRO) and NASA to bring more players into the launch vehicle arena. On Oct. 14, NASA, the NRO and the U.S. Air Force announced plans to certify commercial rockets so that they could compete for future contracts involving Evolved Expendable Launch Vehicle, or EELVs. This means that Space Exploration Technologies’ (SpaceX) could compete for upcoming military contracts.

“This strategy will provide us with the ability to compete in the largest launch market in the world,” said Kirstin Brost Grantham, a spokeswoman with SpaceX. “There are those who are opposed to competition for space launches, they would prefer to see the status quo protected. But SpaceX has shown it is no longer possible to ignore the benefits competition can bring.”

In terms of sheer numbers of launch vehicles purchased – the U.S. Air Force is the largest customer in the world – with the U.S. taxpayer picking up the tab. Therefore it was considered to be in the Air Force’s best interest to find means to reduce this cost. The U.S. Air Force’s requirements are currently handled by United Launch Alliance (ULA) in what is essentially a monopoly (or duopoly considering that ULA is a collective organization – comprised of both Boeing and Lockheed Martin).

The two launch vehicles that ULA provides are the Delta IV and Atlas V family of rockets. Photo Credit: Alan Walters/awaltersphoto.com

“SpaceX welcomes the opportunity to compete for Air Force launches. We are reviewing the MOU, and we expect to have a far better sense of our task after the detailed requirements are released in the coming weeks,” said Adam Harris, SpaceX vice president of government affairs.

The U.S. Department of Defense (DoD) has decided to go ahead with a five-year, 40-booster “block-buy” plan with ULA – despite the fact that the U.S. General Accounting Office’s (GAO) has requested that the DoD rethink that strategy. The GAO stated on Oct. 17, that they are concerned that the DoD is buying too many rockets and at too high of a price.

Under the Evolved Expendable Launch Vehicle Plan, the DoD is set to spend some $15 billion between 2013 and 2017 to acquire some 40 boosters from ULA to send satellites into orbit. For its part, the DoD conceded that it might need to reassess the manner in which it obtained launch vehicles.

As it stand now, United Launch Alliance has a virtual monopoly on providing launch vehicles for the Department of Defense. Photo Credit: Alan Walters/awaltersphoto.com

The new strategy which is set to allow new participants in to bid on DoD and NRO contracts is an attempt to allow the free-market system drive down the cost of rockets. Recently, the price of these rockets has actually increased. The cause for this price increase has been somewhat attributed to the vacuum created by the end of the space shuttle program.

Firms like SpaceX, which seek to compete for military contracts, will have to meet requirements that are laid out in “new entrant certification guides.”
“Fair and open competition for commercial launch providers is an essential element of protecting taxpayer dollars,” said Elon Musk, SpaceX CEO. “Our American-made Falcon vehicles can deliver assured, responsive access to space that will meet warfighter needs while reducing costs for our military customers.”

Space Exploration Technologies (SpaceX) CEO Elon Musk applauded the recent announcement that could see his company competing for military contracts. Photo Credit: Alan Walters/awaltersphoto.com

NASA Strengthens Virgin Galactic Ties With New Contract

NASA has entered an arrangement with commercial space firm Virgin Galactic to fly experiments on board the company's SpaceShipTwo. Photo Credit: Virgin Galactic/Mark Greenburg

[/caption]
NASA has, on a number of occasions tapped the NewSpace firm Virgin Galactic to help the space agency accomplish its objectives – recently, it has done so again. This new contract will see NASA science payloads take suborbital flights on the company’s SpaceShipTwo (SS2) spacecraft. This however is not the first time that NASA has entered into an arrangement with the emerging commercial space flight firm.

NASA first began working with Virgin Galactic in 2007, when it entered into a Memorandum of Understanding to explore possible collaborative efforts to develop various equipment required to conduct space flight operations (space suits, heat shields, and other space flight elements).

Under this arrangement NASA will have one scientific mission flown aboard SpaceShipTwo with options for two additional flights. Photo Credit: Virgin Galactic/Mark Greenberg

Earlier this year, NASA selected seven different firms that either had or were developing suborbital spacecraft – one of these was Virgin Galactic. The announcement that was made Thursday, Oct. 13 is actually the culmination of the Flight Opportunities Program, which was announced on Aug. 9 of this year and established to help NASA meet its technology and research development requirements.

The agreement to fly NASA payloads on SS2 was announced about a week after former NASA Shuttle Program Manager; Mike Moses stated he was leaving the space agency to work as Virgin Galactic’s vice president of operations. Moses will be in charge of all operations at Spaceport America, located near Las Cruces, New Mexico.

On these missions, not only will a carry a scientific payload but an engineer that will monitor the payload and operate the payload. Photo Credit: Virgin Galactic/Mark Greenberg

“I’ve known Mike for a long time, from his flight controller days which led to him becoming a flight director and then moving into the shuttle program,” said Kyle Herring, a NASA public affairs officer. “I think he would be a very valuable asset to any organization that he went to. Mike’s expertise will be very beneficial in not just mission operations but ground operations as well.”

The NASA contract with Virgin Galactic is for one flight with the space agency optioning two additional flights (for a potential of three flights total). If NASA options all three flights, the total contract would be worth an estimated $4.5 million. The announcement came just four days prior to the dedication ceremony for the spaceport’s new headquarters (the dedication was on Monday, Oct. 17).

NASA will flight at least one experiment package on SpaceShipTwo, with an option to fly potentially two more. Photo Credit: Virgin Galactic/Mark Greenberg

Each of these suborbital missions will have a trained engineer on board to handle the experiments.

Virgin Galactic is an arm of the London-based Virgin Group which is owned by British billionaire Sir Richard Branson. Virgin Galactic is working to provide tourists with suborbital flights into space that will allow these space passengers to briefly experience the micro-gravity environment. The flights will launch from a spaceport which is currently under construction near Las Cruces New Mexico. Tickets have been priced at about $200,000 each.

Former Space Shuttle Program Manager Mike Moses has joined Virgin Galactic as the company's vice president of operations. The company conducted a dedication ceremony of its new spaceport, located near Las Cruces, New Mexico on Monday, Oct. 17. Photo Credit: Virgin Galactic/Mark Greenberg

Mars Science Laboratory’s Gateway to Space – The Atlas Spaceflight Operations Center

The Atlas Spaceflight Operations Center or ASOC is where the Atlas V launch vehicle, in this case the one which will launch the Mars Science Laboratory (MSL) rover on its mission Nov. 25 at 10:21 a.m. EDT. Photo Credit: United Launch Alliance

[/caption]
CAPE CANAVERAL, Fla – United Launch Alliance (ULA) uses a structure that incorporates several launch and support operations into one centralized facility. Known as the Atlas Spaceflight Operations Center (ASOC) is about 9,290 square-meters (100,000 square-foot) in size. The ASOC provides all of the required elements – command, control and communication with the Atlas V. It is from the ASOC that the mission is managed as well as monitoring and evaluating launch operations.

The ASOC is actually two separate buildings that were combined into one. More accurately an existing structure had modern sections added to it. The first section was originally built back in the early 60s as part of the Titan III Program. The ASOC was built for the Titan II Chemical Systems Division Solid Rocket Motors. During this period, it was referred to as the Motor Inert Storage (MIS).

The ASOC is actually two buildings in one. The original structure was built in the 60s for the Titan Program. Later elements allowed for spacecraft processing as well as launch operations to be conducted all under one roof. Photo Credit: Alan Walters/awaltersphoto.com

Later, after the awarding of the Evolved Expendable Launch Vehicle (EELV) contract to Lockheed Martin in Oct. of 1998, they added three additional stories to the MIS. Part of this was the addition of the ASOC’s Launch Control Center (LCC).

The blockbuster film, Transformers 3, Dark of the Moon, had a few scenes filmed at the ASOC. Josh Duhamel, who played Lt. Colonel William Lennox, stood in the center of the LCC while battling the Decepticons. The filming took place back in October of 2010.

Key scenes of the blockbuster fiml "Transformers 3: Dark of the Moon" were shot within the ASOC. Image Credit: Paramount Pictures

The different manners in which the various rockets supported by the Denver, Colorado-based ULA are produced are in large part determined by the history of the rockets themselves.

“Launch vehicles are processed in various ways due to the design of the rocket, the backgrounds of the engineers, designing the rocket and how the rocket evolved all played their part,” said United Launch Alliance’s Mike Woolley. “The facilities available to the designers of the launch vehicle’s systems, the topography and geography of the installation as well as the rules, regulations, restrictions of the area played there part in how each of the individual launch systems are processed.”

The Atlas V launch vehicle is one of the two primary launch systems that is supported by the United Launch Alliance (the other being the Delta IV). Image Credit: Lockheed Martin

The ASOC is one part of the overall launch flow for the Atlas V launch vehicle. The other elements (excluding Space Launch Complex 41) are the Horizontal Integration Facility (HIF) and Vertical Integration Facility (VIF).

with a rooms looking down into it, The ASOC a Mission Directors Center, the Spacecraft Operations Center, the Engineering Support Facility, engineering support room which has been dubbed the “Gator Room” as well as an executive conference room.

Inside of the ASOC is the Atlas Launch Control Center or LCC. This allows for rockets to be prepard for flight as well as the launches themselves - to be managed from one building. Photo Credit: United Launch Alliance

The ASOC also has a hospitality room as well as a viewing room on the third floor (the roof is also made available for viewing launches). Lockheed Martin chose to cut back the number of support structures and decided to just build on to the existing MIS building. By doing this, Atlas engineers and technicians as well as the Atlas launch control center are close to the High ay where the Atlas V launch vehicle is processed for flight. This not only reduces the amount of time to process the Atlas booster, but it reduces costs as well.

The last Atlas V that was in the High Bay of the ASOC was the one that will be utilized to send the Mars Science Laboratory (MSL) rover, dubbed Curiosity. The Atlas V 541 (AV-028) recently underwent what is known as a Wet Dress Rehearsal (WDR) where the rocket is taken all the way up to launch. This is done to test out the rocket’s key systems before the payload is attached to the launch vehicle. Currently, MSL is set to launch from Space Launch Complex-41 (SLC-41) on Nov. 25 at 10:21 a.m. EDT.

The next mission that will be launched on the Atlas V Evolved Expendable Launch Vehicle is JPL's Mars Science Laboratory (MSL) rover. Photo Credit: Alan Walters/awaltersphoto.com

Bolden Visits Kennedy Space Center, Talks SLS and the Future

Kennedy Space Center Director Bob Cabana introduces NASA Administrator Charles Bolden in front of the Mobile Launch Platform at Kennedy Space Center in Florida. Photo Credit: Suresh Atapattu

[/caption]
CAPE CANAVERAL, Fla – NASA Administrator Charles Bolden stopped by Kennedy Space Center in Florida to tour NASA’s Mobile Launch Platform. Bolden was joined by fellow former shuttle astronaut and current Kennedy Space Center Director Robert Cabana. The duo toured the 355-foot-tall structure Tuesday, Oct. 11 at 11 a.m. EDT.

The Mobile Launcher’s future was in doubt after the Constellation Program was cancelled. Although nothing definite was stated – everything from scrapping the structure, using it as a platform for tourists at the Kennedy Space Center Visitor Center to just keeping it in reserve was suggested. The space agency now plans to use the structure to launch the Space Launch System or SLS rocket.

NASA Kennedy Space Center Director Bob Cabana (far left) gestures while discussing how the MLP will be used in upcoming missions. To his left is NASA Administrator Charles Bolden and they are surrounded by members of the local media. Photo Credit: Suresh Atapattu

The NASA administrator’s visit was designed to help promote NASA’s recently-unveiled SLS heavy-lift rocket. The launch vehicle somewhat resembles a cross between the cancelled Ares V and the Saturn V moon rockets that launched Apollo astronauts to the moon. It is slated to begin conducting flights by 2017. SLS is comprised primarily of so-called “legacy hardware” – proven technology derived from the space shuttle and Saturn systems.

Bolden spent some time chatting with reporters and working to reassure Kennedy Space Center’s remaining workforce, as well as several hundred Space Coast community and business leaders and elected officials that the area’s future was bright. Bolden used the visit to state that this was a sign that things were improving in the region. He highlighted the fact that new capabilities, such as the placement of the Commercial Crew program office at Kennedy, will help to maintain aerospace skills and capabilities.

NASA Administrator Charles Bolden descends the steps of the MLP during his visit to Kennedy Space Center on Oct. 11, 2011. Photo Credit: Suresh Atapattu

“As our nation looks for ways to compete and win in the 21st century, NASA continues to be an engine of job growth and economic opportunity,” Bolden said. “From California to Florida, the space industry is strong and growing. The next generation of explorers will
not fly a space shuttle, but they may be able to walk on Mars. And those journeys are starting at the Kennedy Space Center today.”

The shuttle elements of SLS include the RS-25 engines (Space Shuttle Main Engines) along with modified versions of the Solid Rocket Boosters that were employed on the space shuttle. The Saturn elements (descendent) are the J-2X engines, which are simpler variants of the J-2 engines employed during the Apollo era.

A few up the massive Mobile Launch Platform and Mobile Launch Tower (the combined structure is generally called the Mobile Launcher). Photo Credit: Julian Leek/Blue Sawtooth Studios

NASA made its plans for the SLS public in September, just one day after Alliant Techsystems (ATK) and NASA announced that an unfunded Space Act Agreement deal to study the viability of using the Liberty rocket to ferry astronauts to orbit. If all goes according to plan, SLS will eventually be utilized to launch the Orion Multi-Purpose Crew Vehicle. It is hoped that the introduction of SLS and other space systems will help to stem the flow of highly-trained and experienced workers from the space agency.

Book Review: The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane

The Space Shuttle: Celebating Thirty Years Of NASA's First Space Plane is chocked full of great imagery and works to cover each of the shuttle's 135 missions. Photo Credit: Zenith Press

[/caption]

The space shuttle program is over. The orbiters are being decommissioned, stripped of the components that allowed them to travel in space. For those that followed the program, those that wished they did and those with only a passing interest in what the program accomplished a new book has been produced covering the entirety of the thirty years that comprised NASA’s longest human space flight program. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is written by aerospace author Piers Bizony and weighs in at 300 pages in length.

Bizony is a prolific author who has focused a lot of his work on space flight. Some of the books that he has written include (but definitely are not limited to) include: One Giant Leap: Apollo 11 Remembered, Space 50, The Man Who Ran the Moon: James E. Webb, NASA, and the Secret History of Project Apollo and Island in the Sky: The International Space Station.

Bizony pulls out all the stops in detailing the shuttle era. From thunder and light - to tragedy, the full spectrum of the shuttle program is highlighted here. Photo Credit: NASA

The book contains 900 color images, detailing the entire history of NASA’s fleet of orbiters. From the first launches and the hope that those initial flights were rich in, to the Challenger tragedy and the subsequent realization that the space shuttles would never be what they were intended to be.

The next phase of the book deals with the post-Challenger period and how NASA worked to find a balance with its fleet of orbiters, while at the same time worked to regain the trust of the America public. The path was both hindered and helped by a single payload – the Hubble Space Telescope.

The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane - has stunning imagery on every page, allowing the reader to once again view the majesty that the shuttle program provided. Photo Credit: NASA

When the images the orbiting telescope beamed back turned out fuzzy, NASA was a laughing stock. Hubble would become a sensation and NASA redeemed its name after the first servicing mission to Hubble corrected the problem with the telescope’s mirror.

Hubble was not the only telescope or probe that the shuttle placed in the heavens. It would however, be the only one that NASA’s fleet of orbiters would visit during several servicing missions. Besides Hubble the shuttle also sent the Chandra X-Ray telescope, Galileo probe to Jupiter and the Magellan probe to Venus during the course of the program’s history.

It is currently unknown when the U.S. will launch crews into orbit again. Some aerospace experts have even suggested that the shuttles be pulled out of retirement to help fill this gap - but this is highly unlikely to happen. Photo Credit: NASA

NASA was now on course to begin construction of the most ambitious engineering feat in human history – the International Space Station. The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane details this period, as well as the tragic loss of the shuttle Columbia in 2003 with great care and attention to detail. Many never-before-seen images are contained within and Bizony uses them to punctuate the history that the space shuttle accomplished with every flight.

With a chance of catastrophic failure estimated by some as being as high as one chance in 53 - the shuttle was a risky endeavor. However, given all of the program's accomplishments - it is not a stretch to say that the shuttle made fact out of last century's science fiction. Photo Credit: NASA

The book also contains a detailed diagram of the orbiter (it is long and therefore was produced as a pull-out section. This element is included near the end and acts as a nice punctuation mark to the stream of imagery contained within.

While it required the combined effort of 16 different nations to make the International Space Station work - the space shuttle made the orbiting laboratory a reality. Photo Credit: NASA

The book is not perfect (but what book is). If one did not know better, upon reading this book one would assume that the Delta Clipper (both DC-X and DC-XA) flew once and upon landing caught fire. DC-X flew eight times – not once. Bizony also describes the lunar element of the Vision for Space Exploration (VSE) as being a repeat of Apollo. Apollo 17 was the longest duration that astronauts roamed the Moon’s surface – they were there for about three days. The VSE called for a permanent crewed presence on the moon.

For those out there that consider themselves “shuttle huggers” this book is simply a must-have. It is perfect to take to autograph shows to be signed by astronauts (as every mission is detailed, it is a simple matter to have crew members sign on the pages that contain their missions). It is also a perfect gift for space aficionados this holiday season. Published by Zenith Press and retailing for $40.00, The Space Shuttle: Celebrating Thirty Years of NASA’s First Space Plane is a welcome addition to your home library.

How will the shuttle be remebered? According to Bizony, given the technological restraints and the numerous accomplishments that the orbiter accomplished - it will be remembered in a positive light. Photo Credit: NASA

Behind the Scenes: Curiosity’s Rocket Prepared at Vertical Integration Facility

One of the most incredible things to see at United Launch Alliance's Vertical Integration Facility - is the surrounding area and the adjacent Space Launch Complex-41. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla — One of the more dramatic buildings operated by United Launch Alliance (ULA) at Kennedy Space Center in Florida is the Vertical Integration Facility or VIF as it is more commonly known. It is in this facility that expendable launch vehicles are brought, lying on their sides – and then hoisted into the vertical position for launch. The current resident in the VIF is the Atlas V 541 (AV-028) that is slated to launch the Mars Science Laboratory (MSL).

At the top of the 292 –foot-tall structure is a 60 ton crane that initially is used to lift the Atlas’ first stage into the vertical position. The payload, ensconced in the protective fairing, is assembled elsewhere. Once it arrives at the VIF, it is hoisted high into the air using the same crane and then mated with the top of the launch vehicle. Given the delicate nature of this operation technicians take their time in lifting the precious cargo and maneuvering it over the rocket.

The U.S. flag and the interstage adapter are seen in the image to the left. The photo to the right helps to illustrate the scale needed to assemble the Atlas V. Photo Credits: Jason Rhian

“You get the most amazing view from the top of the VIF,” said Mike Woolley of United Launch Alliance. “From this level you can clearly see not just Launch Complex 41, but a great deal of Florida’s Space Coast.”

Once the fairing and its payload have been safely affixed to the top of the rocket, the doors are opened up and the Atlas V is then rolled out to the adjacent Space Launch Complex-41 (SLC-41).

At the Vertical Integration Facility's fifh level, the segment of the rocket where the payload (in this case the MSL rover) is attached is the only element of the rocket that is visible. Photo Credit: Alan Walters/awaltersphoto.com

“Once the Atlas V is fully assembled, the completed vehicle is rolled, in the vertical, out to the launch pad.” Woolley said.

Currently on the fifth level the upper part of the Centaur, the all-important rocket that will send the rover on its way to Mars, covered in a protective layer of white plastic, is visible.

One of the easiest ways to display the size of the Atlas - is to actually break up the images. To the left is the top portion, to the right the middle (note the Aerojet Solid Rocket Motors the the right). Photo Credit: Alan Walters/awaltersphoto.com

Descending down the length of the Atlas V, level by level one gains an appreciation for the sheer scale of the Atlas rocket, its solid rocket motors and the attention to detail needed to launch payloads out of Earth’s gravity well.

On Level One the top of the Atlas’ Solid Rocket Motors (SRMs) produced by Aerojet are visible. At the ground floor, one has the ability to look up (somewhat, platforms and rigging block your view) the length of the rocket. On the ground level, one can plainly see that the twin RD-180 engines are Russian-made – the Cyrillic lettering still grace the engines’ nozzles.

Just inside the VIF one can look up the side of the Atlas V, even though elements of the launch vehicle are obstructed - the sight is still impressive. Photo Credit: Jason Rhian

MSL is the next planetary mission on NASA’s docket, more commonly known as “Curiosity” is a nuclear-powered rover about the size of a compact automobile.

Curiosity is currently slated for a Nov. 25 launch date at 10:21 a.m. EDT from Cape Canaveral Air Force Station’s Space Launch Complex 41 (SLC-41). Members of the media (myself included) got to see the Atlas for this launch being lifted into the air in preparation for the November launch when we were being escorted back to the NASA/LSC press site after the GRAIL launch was scrubbed (GRAIL would go on to be launched two days later).

In Focus: Aerospace Photojournalist Mike Killian

Mike Killian is an aerospace journalist who jumped at the opportunity to cover space events at Kennedy Space Center and Cape Canaveral Air Force Station. Photos Courtesy of Mike Killian

[/caption]CAPE CANAVERAL, Fla – The photographers that cover the events that take place in and around Florida’s Space Coast come from diverse backgrounds. However, when it comes to the passion that attracts so many to Cape Canaveral Air Force Station and Kennedy Space Center – their origins are very similar.

Many amateur photographers like Mike Killian have always been interested in spaceflight, in capturing the spectacle of launch. Like Killian, these photographers start out not knowing how to get onto Kennedy Space Center to shoot the launches and other events that take place there. They work out arrangements with NASA friends to get close and then, finally, they get affiliated with an accredited news organization (in Killian’s case the ARES Institute).

“I have loved the space program since I was a child,” Killian said. “Most folks that come out here and do this I doubt very highly that they do it thinking they will get rich. They do it because what they are showing the world is so important, so awe-inspiring…and so beautiful.”

Killian caught the reflection of space shuttle Atlantis as it was towed back to its OPF after completing the final mission of the space shuttle era - STS-135. Photo Courtesy of Mike Killian

Killian has only covered the space program as a photographer for a relatively short time, about three years. During that time however – he has covered some pivotal points in space flight history. The last flights of the space shuttle era, the launch of spacecraft to Earth orbit, the Moon and soon Mars. Killian, also like his compatriots, sacrifices long hours and endures low pay to capture images of these events. But when he gets that perfect shot of solid rocket boosters separating from an Atlas V on its way to orbit, or the final landing of the space shuttle – it is all worth it.

“Photography is pretty much like anything else,” said Killian during a recent interview. “It’s all about timing – being at the right place – at the right time.”

Whether static or in dramtic motion, Killian has captured the space shuttle program's final days. Photo Courtesy of Mike Killian

One recurring theme that occurs in aerospace photography is – progression. Photographers will come out to KSC/CCAFS with their digital cameras, then they will buy a more powerful camera and then they move on to remote cameras. When one hears remote they think the cameras are far away – the truth is that these cameras are extremely close. “Remote” means that they are remotely activated – generally by either a sound or light sensor.

Killian employs 2 Canon Rebel XSi cameras due to the camera’s affordability and versatility.

The 27-year-old, unlike many of his colleagues, does have a favorite image – and it isn’t even one that he took on Kennedy Space Center proper.

Killian's favorite shot shows Launch Complex 39A in the distance, a Shuttle Training Aircraft or STA checking weather conditions - and a very active thunderstorm. Photo Courtesy of Mike Killian

“My favorite shot thus far is of a lightning storm over KSC for the night launch of Discovery on STS-128. That storm scrubbed the launch attempt, but the images I captured that night were unreal,” said Killian. “This particular photo has so much going on – Discovery basking in xenon lights atop launch pad 39A fully fueled with her crew onboard, lightning racing through the clouds directly above KSC, & the shuttle training aircraft flying over the storm (upper left of photo) on weather recon trying to determine if there would be any chance the storm could let up in time to support a launch that night. It’s very unique, not your typical launch photo.”

For Killian photographing the space program allows him to both combine his love of photography with the driving interest that he has for space flight. Killian has no plans to stop photographing the space program anytime soon. For him this is not about the money, it’s about the history of thunder and the wonder of light and like so many of his fellow photojournalists he feels privileged to be able to do what he does.

Killian has covered many different events at Kennedy Space Center. His camera has captured events as stirring as the final launch of the shuttle era - and as poignant as the final rollout of space shuttle Discovery (seen here). Images Courtesy of Mike Killian

Surf, Sand & Space: The Astronaut Beach House

The astronaut beach house has served a crucial role in terms of providing astronauts a chance to collect their breaths and calm their minds before they thunder into space. Photo Credit: Alan Walters/awaltersphoto.com

[/caption]
CAPE CANAVERAL, Fla – Astronauts preparing to launch into space for the better part of the last four decades have had a welcome refuge – the astronaut beach house. This small two-level structure it is often missed by those that are ferried past it to the nearby launch pads. The astronaut beach house is — for those set to thunder into orbit – a vital place to collect their thoughts before they make history. Let’s take a look inside, as three astronauts provide Universe Today with a guided tour of this historic and storied house.

Astronauts Robert Springer, Nicole P. Stott and Sam Durrance talked about their experiences at NASA's astronaut beach house. Photo Credit: Alan Walters/awaltersphoto.com

Robert C. Springer flew into space on space shuttle Discovery on STS-29 and on Atlantis for a Department of Defense mission on STS-38. For him, the beach house provided astronauts with a refuge from the hectic atmosphere that comes with preparing to launch to orbit. Springer retired from NASA and the United States Marine Corps in 1990. Afterward he worked for the Boeing Company as director of quality systems, Integrated Defense Systems. Springer views the beach house as a place for one to catch their breath – before the big day.

Sam T. Durrance is similar to both Springer in that he flew to orbit twice. His first mission was STS-35 aboard the space shuttle Columbia and his second was STS-67 on Endeavour. Durrance was a payload specialist on both of his two flights; this role required him to focus on each mission’s specific payload. Durrance is currently employed by the Florida Institute of Technology located in Melbourne, Florida, where he serves as a professor in the Department of Physics and Space Sciences.

Nicole P. Stott started out as a operations engineer at KSC in one of NASA’s Orbiter Processing Facilities. Stott supported human space flight endeavors in numerous roles at KSC before she moved to Johnson Space Center in 1998. She was selected for astronaut training two years later. Stott flew to the International Space Station on STS-128 where she stayed for 91 days before returning to Earth with the crew of STS-129. She would return to the ISS as a member of the STS-133 crew.

Stott came to agency later than Springer and Durrance and therefore her view is somewhat different. For her, the house served to both remind and include her in the area’s rich history.

“It’s a special place, you feel like your part of something here,” said Stott as she looked out from the beach house’s deck toward the ocean. “There is so much history here that while you know that when you’re here, it’s for an event that you’re participating in, but you’re aware that there is a lot that has gone on before you as well.”