Does Light Experience Time?

Does Light Experience Time?

Have you ever noticed that time flies when you’re having fun? Well, not for light. In fact, photons don’t experience any time at all. Here’s a mind-bending concept that should shatter your brain into pieces.

As you might know, I co-host Astronomy Cast, and get to pick the brain of the brilliant astrophysicist Dr. Pamela Gay every week about whatever crazy thing I think of in the shower. We were talking about photons one week and she dropped a bombshell on my brain. Photons do not experience time. [SNARK: Are you worried they might get bored?]

Just think about that idea. From the perspective of a photon, there is no such thing as time. It’s emitted, and might exist for hundreds of trillions of years, but for the photon, there’s zero time elapsed between when it’s emitted and when it’s absorbed again. It doesn’t experience distance either. [SNARK: Clearly, it didn’t need to borrow my copy of GQ for the trip.]

Since photons can’t think, we don’t have to worry too much about their existential horror of experiencing neither time nor distance, but it tells us so much about how they’re linked together. Through his Theory of Relativity, Einstein helped us understand how time and distance are connected.

Let’s do a quick review. If we want to travel to some distant point in space, and we travel faster and faster, approaching the speed of light our clocks slow down relative to an observer back on Earth. And yet, we reach our destination more quickly than we would expect. Sure, our mass goes up and there are enormous amounts of energy required, but for this example, we’ll just ignore all that.

If you could travel at a constant acceleration of 1 g, you could cross billions of light years in a single human generation. Of course, your friends back home would have experienced billions of years in your absence, but much like the mass increase and energy required, we won’t worry about them.

The closer you get to light speed, the less time you experience and the shorter a distance you experience. You may recall that these numbers begin to approach zero. According to relativity, mass can never move through the Universe at light speed. Mass will increase to infinity, and the amount of energy required to move it any faster will also be infinite. But for light itself, which is already moving at light speed… You guessed it, the photons reach zero distance and zero time.

Photons can take hundreds of thousands of years to travel from the core of the Sun until they reach the surface and fly off into space. And yet, that final journey, that could take it billions of light years across space, was no different from jumping from atom to atom.

There, now these ideas can haunt your thoughts as they do mine. You’re welcome. What do you think? What’s your favorite mind bending relativity side effect? Tell us in the comments below.

Where Is the Center of the Universe?

Where Is the Center of the Universe?

In a previous episode we hinted that every spot is at the center of the Universe. But why? It turns out, every way you look at it, you’re standing dead center at the middle of everything. And so is everyone else.

We ended a previous episode with how the center of the Universe is everywhere, and then quickly moved on to “Thanks for watching” without providing any details other than a wink and a nod.

Good news, here come your details. First, imagine the expanding Universe in your mind. You might be picturing an inflating ball pushing out in all directions. Perhaps you’re seeing some kind of giant expanding celestial pumpkin. Unfortunately, that idea is incorrect. But don’t feel bad, our thinking meat parts just aren’t built to do this sort of thing.

The region of space that we can see is the observable Universe. When we look in any direction, we’re seeing the light that left stars millions and even billions of years ago. When you get out to the 13.8 billion light year mile marker, you’re seeing the light that was emitted shortly after the Big Bang, when the Universe cooled down to the point that it became transparent. So the observable Universe is a sphere around you, it’s relative to your position.

My observable Universe is a sphere around me, relative to my position. So if I’m 10 meters away from you, I can see a little further into the Universe in that direction. If you look behind you, you’re seeing the observable Universe a little further in the that direction.

Imagine you’re standing in a dark room holding a candle. You can see out into a sphere around you. You’re at the center of your observable space. And if I’m in a different location, I’ll have a different observable sphere. This is why we say that everyone is at the center of their own personal observable Universe.

This has hints of pedantry and it’s a little unsatisfying, so let’s dig a little deeper. Where is the actual center of the Universe, regardless of who’s observing it? Our Universe might be finite or it might be infinite. Astronomers don’t actually know for sure. Their most precise calculations say that the observable Universe is 93 billion light years across.

Representation of the timeline of the universe over 13.7 billion years, and the expansion in the universe that followed. Credit: NASA/WMAP Science Team.
Representation of the timeline of the universe over 13.7 billion years, and the expansion in the universe that followed. Credit: NASA/WMAP Science Team.

Remember that light from the Big Bang that took 13.8 billion light years to get to you? Well the expansion of the Universe has pushed that region out to more than 46 billion light-years away. Look as far as you can to the right and as far as you can to the left. Those two spots are currently 93 billion light-years away from each other. So we can’t see how big the Universe really is. It’s got to be larger than 93 billion light-years. Everything outside that region we just can’t see… yet. It might be infinite.

If the Universe is infinite, then there’s an infinite amount of space in that direction and an infinite amount of space in that direction, and that direction. And we’re back where we started, literally. Once again, you’re at the center of the Universe. And so am I.

But what if the Universe is finite? That’s where it gets tricky. Imagine the observable Universe as a tiny sphere inside the much larger actual Universe. Maybe it’s 100 billion light years across, or maybe a trillion, or a quadrillion. Whatever the size, it’s not infinite. Now you would think there’s a center, right?

Well, astronomers think that the topology of a finite Universe indicates that if you travel in any one direction long enough, you’ll return to your starting point. In other words, if you could look far enough in any direction, you’d see the back of your head.

Imagine the universe as a sphere - Advanced Celestial Sphere (Wolfram Project). Credit: Jim Arlow
Imagine the universe as a sphere – Advanced Celestial Sphere (Wolfram Project). Credit: Jim Arlow

We did a whole episode on this, and you might want to check it out. And you’ll really want to check out Zogg the Aliens’ in-depth explanation. As an analogy, consider an ant on the surface of a sphere. Should the ant choose to walk in any direction, it’ll return to its starting point. Take that concept and scale it up one dimension. Can’t imagine it? No problem. Like I said, our brains aren’t equipped or experienced. And yet, that extra dimension seems to be the nature of the Universe. Regardless of what direction you travel, if it takes you the same amount of time to return to your starting point. Well… you’re at the center of the Universe?

See? No matter how you think about it and break it down, you’re at the center of everything. And so am I. What do you think? Is the Universe finite or infinite? Tell us why in the comments below.

How Many Moons Does Saturn Have?

A collage of Saturn (bottom left) and some of its moons: Titan, Enceladus, Dione, Rhea and Helene. Credit: NASA/JPL/Space Science Institute

Saturn is well known for being a gas giant, and for its impressive ring system. But would it surprise you to know that this planet also has the second-most moons in the Solar System, second only to Jupiter? Yes, Saturn has at least 150 moons and moonlets in total, though only 62 have confirmed orbits and only 53 have been given official names.

Most of these moons are small, icy bodies that are little more than parts of its impressive ring system. In fact, 34 of the moons that have been named are less than 10 km in diameter while another 14 are 10 to 50 km in diameter. However, some of its inner and outer moons are among the largest and most dramatic in the Solar System, measuring between 250 and 5000 km in diameter and housing some of the greatest mysteries in the Solar System.

Saturn’s moons have such a variety of environments between them that you’d be forgiven for wanting to spend an entire mission just looking at its satellites. From the orange and hazy Titan to the icy plumes emanating from Enceladus, studying Saturn’s system gives us plenty of things to think about. Not only that, the moon discoveries keep on coming. As of April 2014, there are 62 known satellites of Saturn (excluding its spectacular rings, of course). Fifty-three of those worlds are named.

The Cassini spacecraft observes three of Saturn's moons set against the darkened night side of the planet. Credit: NASA/JPL/Space Science Institute
The Cassini spacecraft observes three of Saturn’s moons set against the darkened night side of the planet. Credit: NASA/JPL/Space Science Institute

Discovery and Naming

Prior to the invention of telescopic photography,  eight of Saturn’s moons were observed using simple telescopes. The first to be discovered was Titan, Saturn’s largest moon, which was observed by Christiaan Huygens in 1655 using a telescope of his own design. Between 1671 and 1684, Giovanni Domenico Cassini discovered the moons of Tethys, Dione, Rhea, and Iapetus – which he collectively named the “Sider Lodoicea” (Latin for “Louisian Stars”, after King Louis XIV of France).

n 1789, William Herschel discovered Mimas and Enceladus, while father-and-son astronomers W.C Bond and G.P. Bond discovered Hyperion in 1848 – which was independently discovered by William Lassell that same year. By the end of the 19th century, the invention of long-exposure photographic plates allowed for the discovery of more moons – the first of which Phoebe, observed in 1899 by W.H. Pickering.

In 1966, the tenth satellite of Saturn was discovered by French astronomer Audouin Dollfus, which was later named Janus. A few years later, it was realized that his observations could only be explained if another satellite had been present with an orbit similar to that of Janus. This eleventh moon was later named Epimetheus, which shares the same orbit as Janus and is the only known co-orbital in the Solar System.

Saturn and its moons. Image credit: NASA/JPL/SSI
Collage of Saturn and its largest moons. Credit: NASA/JPL/SSI

By 1980, three additional moons were discovered and later confirmed by the Voyager probes. They were the trojan moons (see below) of Helene (which orbits Dione) as well as Telesto and Calypso (which orbit Tethys).

The study of the outer planets has since been revolutionized by the use of unmanned space probes. This began with the arrival of the Voyager spacecraft to the Cronian system in 1980-81, which resulted in the discovery of three additional moons – Atlas, Prometheus, and Pandora – bringing the total to 17. By 1990, archived images also revealed the existence of Pan.

This was followed by the Cassini-Huygens mission, which arrived at Saturn in the summer of 2004. Initially, Cassini discovered three small inner moons, including Methone and Pallene between Mimas and Enceladus, as well as the second Lagrangian moon of Dione – Polydeuces. In November of 2004, Cassini scientists announced that several more moons must be orbiting within Saturn’s rings. From this data, multiple moonlets and the moons of Daphnis and Anthe have been confirmed.

The study of Saturn’s moons has also been aided by the introduction of digital charge-coupled devices, which replaced photographic plates by the end of the 20th century. Because of this, ground-based telescopes have begun to discover several new irregular moons around Saturn. In 2000, three medium-sized telescopes found thirteen new moons with eccentric orbits that were of considerable distance from the planet.

The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and irregularly shaped Hyperion (bottom). Some small moons are also shown. All to scale. Credit: NASA/JPL/Space Science Institute
The moons of Saturn, from left to right: Mimas, Enceladus, Tethys, Dione, Rhea; Titan in the background; Iapetus (top) and Hyperion (bottom). Credit: NASA/JPL/Space Science Institute

In 2005, astronomers using the Mauna Kea Observatory announced the discovery of twelve more small outer moons. In 2006, astronomers using Japan’s Subaru Telescope at Mauna Kea reported the discovery of nine more irregular moons. In April of 2007, Tarqeq (S/2007 S 1) was announced, and in May of that same year, S/2007 S 2 and S/2007 S 3 were reported.

The modern names of Saturn’s moons were suggested by John Herschel (William Herschel’s son) in 1847. In keeping with the nomenclature of the other planets, he proposed they be named after mythological figures associated with the Roman god of agriculture and harvest – Saturn, the equivalent of the Greek Cronus. In particular, the seven known satellites were named after Titans, Titanesses and Giants – the brothers and sisters of Cronus.

In 1848, Lassell proposed that the eighth satellite of Saturn be named Hyperion after another Titan. When in the 20th century, the names of Titans were exhausted, the moons were named after different characters of the Greco-Roman mythology, or giants from other mythologies. All the irregular moons (except Phoebe) are named after Inuit and Gallic gods and Norse ice giants.

Saturn’s Inner Large Moons

Saturn’s moons are grouped based on their size, orbits, and proximity to Saturn. The innermost moons and regular moons all have small orbital inclinations and eccentricities and prograde orbits. Meanwhile, the irregular moons in the outermost regions have orbital radii of millions of kilometers, orbital periods lasting several years, and move in retrograde orbits.

Enceladus. Credit: NASA/JPL/Space Science Institute
Saturn’s moon of Enceladus. Credit: NASA/JPL/Space Science Institute

Saturn’s Inner Large Moons, which orbit within the E Ring (see below), include the larger satellites Mimas, Enceladus, Tethys, and Dione. These moons are all composed primarily of water ice and are believed to be differentiated into a rocky core and an icy mantle and crust. With a diameter of 396 km and a mass of 0.4×1020 kg, Mimas is the smallest and least massive of these moons. It is ovoid in shape and orbits Saturn at a distance of 185,539 km with an orbital period of 0.9 days.

Some people jokingly call Mimas the “Death Star” moon because of the crater on its surface that resembles the machine from the Star Wars universe. The 140 km (88 mi) Herschel Crater is about a third the diameter of the moon itself and could have created fractures (chasmata) on the moon’s opposing side. There are in fact craters throughout the moon’s small surface, making it among the most pockmarked in the Solar System.

Enceladus, meanwhile, has a diameter of 504 km, a mass of 1.1×1020 kg, and is spherical in shape. It orbits Saturn at a distance of 237,948 km and takes 1.4 days to complete a single orbit. Though it is one of the smaller spherical moons, it is the only Cronian moon that is endogenously active – and one of the smallest known bodies in the Solar System that is geologically active. This results in features like the famous “tiger stripes” – a series of continuous, ridged, slightly curved, and roughly parallel faults within the moon’s southern polar latitudes.

Large geysers have also been observed in the southern polar region that periodically releases plumes of water ice, gas, and dust which replenish Saturn’s E ring. These jets are one of several indications that Enceladus has liquid water beneath its icy crust, where geothermal processes release enough heat to maintain a warm water ocean closer to its core.

Dione's trailing hemisphere, showing the patches of "whispy terrain". Credit: NASA/JPL
Dione’s trailing hemisphere, showing the patches of “whispy terrain”. Credit: NASA/JPL

The moon has at least five different kinds of terrain, a “young” geological surface of less than 100 million years. With a geometrical albedo of more than 140%, which is due to it being composed largely of water ice, Enceladus is one of the brightest known objects in the Solar System.

At 1066 km in diameter, Tethys is the second-largest of Saturn’s inner moons and the 16th-largest moon in the Solar System. The majority of its surface is made up of heavily cratered and hilly terrain and a smaller and smoother plains region. Its most prominent features are the large impact crater of Odysseus, which measures 400 km in diameter, and a vast canyon system named Ithaca Chasma – which is concentric with Odysseus and measures 100 km wide, 3 to 5 km deep, and 2,000 km long.

With a diameter and mass of 1,123 km and 11×1020 kg, Dione is the largest inner moon of Saturn. The majority of Dione’s surface is heavily cratered old terrain, with craters that measure up to 250 km in diameter. However, the moon is also covered with an extensive network of troughs and lineaments which indicate that in the past it had global tectonic activity.

It’s covered in canyons, crackings, craters, and is coated from dust in the E-ring that originally came from Enceladus. The location of this dust has led astronomers to theorize that the moon was spun about 180 degrees from its original disposition in the past, perhaps due to a large impact.

Saturn’s Large Outer Moons:

The Large Outer Moons, which orbit outside of the Saturn’s E Ring, are similar in composition to the Inner Moons – i.e. composed primarily of water ice, and rock. Of these, Rhea is the second-largest – measuring 1,527 km in diameter and 23×1020 kg in mass – and the ninth-largest moon in the Solar System. With an orbital radius of 527,108 km, it is the fifth-most distant of the larger moons and takes 4.5 days to complete an orbit.

Views of Saturn's moon Rhea. Credit: NASA/JPL/Space Science Institute
Views of Saturn’s moon Rhea. Credit: NASA/JPL/Space Science Institute

Like other Cronian satellites, Rhea has a rather heavily cratered surface and a few large fractures on its trailing hemisphere. Rhea also has two very large impact basins on its anti-Saturnian hemisphere – the Tirawa crater (similar to Odysseus on Tethys) and the Inktomi crater – which measure about 400 and 50 km across, respectively.

Rhea has at least two major sections, the first being bright craters with craters larger than 40 km (25 miles), and a second section with smaller craters. The difference in these features is believed to be evidence of a major resurfacing event at some time in Rhea’s past.

At 5150 km in diameter and 1,350×1020 kg in mass, Titan is Saturn’s largest moon and comprises more than 96% of the mass in orbit around the planet. Titan is also the only large moon to have its own atmosphere, which is cold, dense, and composed primarily of nitrogen with a small fraction of methane. Scientists have also noted the presence of polycyclic aromatic hydrocarbons in the upper atmosphere, as well as methane ice crystals.

The surface of Titan, which is difficult to observe due to persistent atmospheric haze, shows only a few impact craters, evidence of cryovolcanoes, and longitudinal dune fields that were apparently shaped by tidal winds. Titan is also the only body in the Solar System besides Earth with bodies of liquid on its surface, in the form of methane–ethane lakes in Titan’s north and south polar regions.

ASA's Cassini spacecraft looks toward the night side of Saturn's largest moon and sees sunlight scattering through the periphery of Titan's atmosphere and forming a ring of color. Credit: NASA/JPL-Caltech/Space Science Institute
Image of Titan’s taken by the Cassini spacecraft, showing light passing through the periphery of the moon’s atmosphere. Credit: NASA/JPL-Caltech/Space Science Institute

Titan is also distinguished for being the only Cronian moon that has ever had a probe land on it. This was the Huygens lander, which was carried to the hazy world by the Cassini spacecraft. Titan’s “Earth-like processes” and thick atmosphere are among the things that make this world stand out to scientists, which include its ethane and methane rains from the atmosphere and flows on the surface.

With an orbital distance of 1,221,870 km, it is the second-farthest large moon from Saturn and completes a single orbit every 16 days. Like Europa and Ganymede, it is believed that Titan has a subsurface ocean made of water mixed with ammonia, which can erupt to the surface of the moon and lead to cryovolcanism.

Hyperion is Titan’s immediate neighbor. At an average diameter of about 270 km, it is smaller and lighter than Mimas. It is also irregularly shaped and quite odd in composition. Essentially, the moon is an ovoid, tan-colored body with an extremely porous surface (which resembles a sponge).  The surface of Hyperion is covered with numerous impact craters, most of which are 2 to 10 km in diameter. It also has a highly unpredictable rotation, with no well-defined poles or equator.

At 1,470 km in diameter and 18×1020 kg in mass, Iapetus is the third-largest of Saturn’s large moons. And at a distance of 3,560,820 km from Saturn, it is the most distant of the large moons and takes 79 days to complete a single orbit. Due to its unusual color and composition – its leading hemisphere is dark and black whereas its trailing hemisphere is much brighter – it is often called the “yin and yang” of Saturn’s moons.

The two sides of Iapetus. Credit: NASA/JPL
The two sides of Iapetus, Saturn’s “yin-yang moon”. Credit: NASA/JPL

Saturn’s Irregular Moons:

Beyond these larger moons are Saturn’s Irregular Moons. These satellites are small, have large radii, are inclined, have mostly retrograde orbits, and are believed to have been acquired by Saturn’s gravity. These moons are made up of three basic groups – the Inuit Group, the Gallic Group, and the Norse Group.

The Inuit Group consists of five irregular moons that are all named from Inuit mythology – Ijiraq, Kiviuq, Paaliaq, Siarnaq, and Tarqeq. All have prograde orbits that range from 11.1 to 17.9 million km, and from 7 to 40 km in diameter. They are all similar in appearance (reddish in hue) and have orbital inclinations of between 45 and 50°.

The Gallic group consists of four prograde outer moons that are named after characters in Gallic mythology – Albiorix, Bebhionn, Erriapus, and Tarvos. Here too, the moons are similar in appearance and have orbits that range from 16 to 19 million km. Their inclinations are in the 35°-40° range, their eccentricities around 0.53, and they range in size from 6 to 32 km.

Last, there is the Norse group, which consists of 29 retrograde outer moons that take their names from Norse mythology. These satellites range in size from 6 to 18 km, their distances from 12 and 24 million km, their inclinations between 136° and 175°, and their eccentricities between 0.13 and 0.77. This group is also sometimes referred to as the Phoebe group, due to the presence of a single larger moon in the group – which measures 240 km in diameter. The second-largest, Ymir, measures 18 km across.

Saturns rings and moons Credit: NASA
Saturn’s rings and moons Credit: NASA

Within the Inner and Outer Large Moons, there are also those belonging to the Alkyonide group. These moons – Methone, Anthe, and Pallene – are named after the Alkyonides of Greek mythology, are located between the orbits of Mimas and Enceladus, and are among the smallest moons around Saturn.  Some of the larger moons even have moons of their own, which are known as Trojan moons. For instance, Tethys has two trojans – Telesto and Calypso, while Dione has Helene and Polydeuces.

Moon Formation:

It is thought that Saturn’s moon of Titan, its mid-sized moons and rings developed in a way that is closer to the Galilean moons of Jupiter. In short, this would mean that the regular moons formed from a circumplanetary disc, a ring of accreting gas, and solid debris similar to a protoplanetary disc. Meanwhile, the outer, irregular moons are believed to have been objects that were captured by Saturn’s gravity and remained in distant orbits.

However, there are some variations to this theory. In one alternative scenario, two Titan-sized moons were formed from an accretion disc around Saturn; the second one eventually broke up to produce the rings and inner mid-sized moons. In another, two large moons fused together to form Titan, and the collision scattered icy debris that formed to create the mid-sized moons.

However, the mechanics of how the moon formed remains a mystery for the time being. With additional missions mounted to study the atmospheres, compositions, and surfaces of these moons, we may begin to understand where they truly came from.

Much like Jupiter, and all the other gas giants, Saturn’s system of satellites is extensive as it is impressive. In addition to the larger moons that are believed to have formed from a massive debris field that once orbited it, it also has countless smaller satellites that were captured by its gravitational field over the course of billions of years. One can only imagine how many more remain to be found orbiting the ringed giant.

We have many great articles on Saturn and its moons here at Universe Today. For example, here’s How Many Moons Does Saturn Have? and Is Saturn Making a New Moon?

Here’s an article about the discovery of Saturn’s 60th moon, and another article about how Saturn’s moons could be creating new rings.

Want more information about Saturn’s moons? Check out NASA’s Cassini information on the moons of Saturn, and more from NASA’s Solar System Exploration site.

We have recorded two episodes of Astronomy Cast just about Saturn. The first is Episode 59: Saturn, and the second is Episode 61: Saturn’s Moons.

Sources:

The Inner and Outer Planets in Our Solar System

The Solar System. Credit: spaceplace.nasa.gov

In our Solar System, astronomers often divide the planets into two groups — the inner planets and the outer planets. The inner planets are closer to the Sun and are smaller and rockier. The outer planets are further away, larger and made up mostly of gas.

The inner planets (in order of distance from the sun, closest to furthest) are Mercury, Venus, Earth and Mars. After an asteroid belt comes the outer planets, Jupiter, Saturn, Uranus and Neptune. The interesting thing is, in some other planetary systems discovered, the gas giants are actually quite close to the sun.

This makes predicting how our Solar System formed an interesting exercise for astronomers. Conventional wisdom is that the young Sun blew the gases into the outer fringes of the Solar System and that is why there are such large gas giants there. However, some extrasolar systems have “hot Jupiters” that orbit close to their Sun.

The Inner Planets:

The four inner planets are called terrestrial planets because their surfaces are solid (and, as the name implies, somewhat similar to Earth — although the term can be misleading because each of the four has vastly different environments). They’re made up mostly of heavy metals such as iron and nickel, and have either no moons or few moons. Below are brief descriptions of each of these planets based on this information from NASA.

Mercury: Mercury is the smallest planet in our Solar System and also the closest. It rotates slowly (59 Earth days) relative to the time it takes to rotate around the sun (88 days). The planet has no moons, but has a tenuous atmosphere (exosphere) containing oxygen, sodium, hydrogen, helium and potassium. The NASA MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft is currently orbiting the planet.

The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute
The terrestrial planets of our Solar System at approximately relative sizes. From left, Mercury, Venus, Earth and Mars. Credit: Lunar and Planetary Institute

Venus: Venus was once considered a twin planet to Earth, until astronomers discovered its surface is at a lead-melting temperature of 900 degrees Fahrenheit (480 degrees Celsius). The planet is also a slow rotator, with a 243-day long Venusian day and an orbit around the sun at 225 days. Its atmosphere is thick and contains carbon dioxide and nitrogen. The planet has no rings or moons and is currently being visited by the European Space Agency’s Venus Express spacecraft.

Earth: Earth is the only planet with life as we know it, but astronomers have found some nearly Earth-sized planets outside of our solar system in what could be habitable regions of their respective stars. It contains an atmosphere of nitrogen and oxygen, and has one moon and no rings. Many spacecraft circle our planet to provide telecommunications, weather information and other services.

Mars: Mars is a planet under intense study because it shows signs of liquid water flowing on its surface in the ancient past. Today, however, its atmosphere is a wispy mix of carbon dioxide, nitrogen and argon. It has two tiny moons (Phobos and Deimos) and no rings. A Mars day is slightly longer than 24 Earth hours and it takes the planet about 687 Earth days to circle the Sun. There’s a small fleet of orbiters  and rovers at Mars right now, including the large NASA Curiosity rover that landed in 2012.

The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
The outer planets of our Solar System at approximately relative sizes. From left, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

The Outer Planets:

The outer planets (sometimes called Jovian planets or gas giants) are huge planets swaddled in gas. They all have rings and all of plenty of moons each. Despite their size, only two of them are visible without telescopes: Jupiter and Saturn. Uranus and Neptune were the first planets discovered since antiquity, and showed astronomers the solar system was bigger than previously thought. Below are brief descriptions of each of these planets based on this information from NASA.

Jupiter: Jupiter is the largest planet in our Solar System and spins very rapidly (10 Earth hours) relative to its orbit of the sun (12 Earth years). Its thick atmosphere is mostly made up of hydrogen and helium, perhaps surrounding a terrestrial core that is about Earth’s size. The planet has dozens of moons, some faint rings and a Great Red Spot — a raging storm happening for the past 400 years at least (since we were able to view it through telescopes). NASA’s Juno spacecraft is en route and will visit there in 2016.

Saturn: Saturn is best known for its prominent ring system — seven known rings with well-defined divisions and gaps between them. How the rings got there is one subject under investigation. It also has dozens of moons. Its atmosphere is mostly hydrogen and helium, and it also rotates quickly (10.7 Earth hours) relative to its time to circle the Sun (29 Earth years). Saturn is currently being visited by the Cassini spacecraft, which will fly closer to the planet’s rings in the coming years.

Near-infrared views of Uranus reveal its otherwise faint ring system, highlighting the extent to which it is tilted. Credit: Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.
Near-infrared views of Uranus reveal its otherwise faint ring system, highlighting the extent to which it is tilted. Credit: Lawrence Sromovsky, (Univ. Wisconsin-Madison), Keck Observatory.

Uranus: Uranus was first discovered by William Herschel in 1781. The planet’s day takes about 17 Earth hours and one orbit around the Sun takes 84 Earth years. Its mass contains water, methane, ammonia, hydrogen and helium surrounding a rocky core. It has dozens of moons and a faint ring system. There are no spacecraft slated to visit Uranus right now; the last visitor was Voyager 2 in 1986.

Neptune: Neptune is a distant planet that contains water, ammmonia, methane, hydrogen and helium and a possible Earth-sized core. It has more than a dozen moons and six rings. The only spacecraft to ever visit it was NASA’s Voyager 2 in 1989.

To learn more about the planets and missions, check out these links:

Solar System Exploration: Planets (NASA)
NASA Photojournal (NASA)
Missions (NASA)
Space Science (European Space Agency)
USGS Astrogeology (U.S. Geological Survey)
The Solar System And Its Planets (European Space Agency)

How Many Moons Does Venus Have?

A radar view of Venus taken by the Magellan spacecraft, with some gaps filled in by the Pioneer Venus orbiter. Credit: NASA/JPL

There are dozens upon dozens of moons in the Solar System, ranging from airless worlds like Earth’s Moon to those with an atmosphere (most notably, Saturn’s Titan). Jupiter and Saturn have many moons each, and even Mars has a couple of small asteroid-like ones. But what about Venus, the planet that for a while, astronomers thought about as Earth’s twin?

The answer is no moons at all. That’s right, Venus (and the planet Mercury) are the only two planets that don’t have a single natural moon orbiting them. Figuring out why is one question keeping astronomers busy as they study the Solar System.

Astronomers have three explanations about how planets get a moon or moons. Perhaps the moon was “captured” as it drifted by the planet, which is what some scientists think happened to Phobos and Deimos (near Mars). Maybe an object smashed into the planet and the fragments eventually coalesced into a moon, which is the leading theory for how Earth’s Moon came together. Or maybe moons arose from general accretion of matter as the solar system was formed, similar to how planets came together.

The International Space Station captured as it passed in front of the Moon on Dec. 6, 2013, as seen from Puerto Rico. Credit and copyright: Juan Gonzalez-Alicea.
The International Space Station captured as it passed in front of the Moon on Dec. 6, 2013, as seen from Puerto Rico. Credit and copyright: Juan Gonzalez-Alicea.

Considering the amount of stuff flying around the Solar System early in its history, it’s quite surprising to some astronomers that Venus does not have a moon today. Perhaps, though, it had one in the distant past. In 2006, California Institute of Technology researchers Alex Alemi and David Stevenson presented at the American Astronomical Society’s division of planetary sciences meeting and said Venus could have been smacked by a large rock at least twice. (You can read the abstract here.)

“Most likely, Venus was slammed early on and gained a moon from the resulting debris. The satellite slowly spiraled away from the planet, due to tidal interactions, much the way our Moon is still slowly creeping away from Earth,” Sky and Telescope wrote of the research.

“However, after only about 10 million years Venus suffered another tremendous blow, according to the models. The second impact was opposite from the first in that it ‘reversed the planet’s spin,’ says Alemi. Venus’s new direction of rotation caused the body of the planet to absorb the moon’s orbital energy via tides, rather than adding to the moon’s orbital energy as before. So the moon spiraled inward until it collided and merged with Venus in a dramatic, fatal encounter.”

Venus as photographed by the Pioneer spacecraft in 1978. Some exoplanets may suffer the same fate as this scorched world. Credit: NASA/JPL/Caltech
Venus as photographed by the Pioneer spacecraft in 1978. Some exoplanets may suffer the same fate as this scorched world. Credit: NASA/JPL/Caltech

There could be other explanations as well, however, which is part of why astronomers are so interested in revisiting this world. Figuring out the answer could teach us more about the solar system’s formation.

To learn more about Venus, check out these links:

Venus (NASA)
Venus Express (European Space Agency spacecraft currently at the planet)
Venus (Astronomy Cast)
Venus (Windows To The Universe)
Venus Crater Database (Lunar and Planetary Institute)
Magellan Mission to Venus (NASA)
Chasing Venus (Smithsonian)

How Far Are The Planets From The Sun?

Artist's impression of the planets in our solar system, along with the Sun (at bottom). Credit: NASA

The eight planets in our solar system each occupy their own orbits around the Sun. They orbit the star in ellipses, which means their distance to the sun varies depending on where they are in their orbits. When they get closest to the Sun, it’s called perihelion, and when it’s farthest away, it’s called aphelion.

So to talk about how far the planets are from the sun is a difficult question, not only because their distances constantly change, but also because the spans are so immense — making it hard for a human to grasp. For this reason, astronomers often use a term called astronomical unit, representing the distance from the Earth to the Sun.

The table below (first created by Universe Today founder Fraser Cain in 2008) shows all the planets and their distance to the Sun, as well as how close these planets get to Earth.

Mercury:

Closest: 46 million km / 29 million miles (.307 AU)
Farthest: 70 million km / 43 million miles (.466 AU)
Average: 57 million km / 35 million miles (.387 AU)
Closest to Mercury from Earth: 77.3 million km / 48 million miles

Venus:

Closest: 107 million km / 66 million miles (.718 AU)
Farthest: 109 million km / 68 million miles (.728 AU)
Average: 108 million km / 67 million miles (.722 AU)
Closest to Venus from Earth: 40 million km / 25 million miles

The planet Venus, as imaged by the Magellan 10 mission. Credit: NASA/JPL
The planet Venus, as imaged by the Magellan 10 mission. Credit: NASA/JPL

Earth:

Closest: 147 million km / 91 million miles (.98 AU)
Farthest: 152 million km / 94 million miles (1.01 AU)
Average: 150 million km / 93 million miles (1 AU)

Mars:

Closest: 205 million km / 127 million miles (1.38 AU)
Farthest: 249 million km / 155 million miles (1.66 AU)
Average: 228 million km / 142 million miles (1.52 AU)
Closest to Mars from Earth: 55 million km / 34 million miles

Jupiter:

Closest: 741 million km /460 million miles (4.95 AU)
Farthest: 817 million km / 508 million miles (5.46 AU)
Average: 779 million km / 484 million miles (5.20 AU)
Closest to Jupiter from Earth: 588 million km / 346 million miles

Jupiter and Io. Image Credit: NASA/JPL
Artist’s impression of Jupiter and Io. Credit: NASA/JPL

Saturn:

Closest: 1.35 billion km / 839 million miles (9.05 AU)
Farthest: 1.51 billion km / 938 million miles (10.12 AU)
Average: 1.43 billion km / 889 million miles (9.58 AU)
Closest to Saturn from Earth: 1.2 billion km /746 million miles

Uranus:

Closest: 2.75 billion km / 1.71 billion miles (18.4 AU)
Farthest: 3.00 billion km / 1.86 billion miles (20.1 AU)
Average: 2.88 billion km / 1.79 billion miles (19.2 AU)
Closest to Uranus from Earth: 2.57 billion km / 1.6 billion miles

Neptune:

Closest: 4.45 billion km /2.77 billion miles (29.8 AU)
Farthest: 4.55 billion km / 2.83 billion miles (30.4 AU)
Average: 4.50 billion km / 2.8 billion miles (30.1 AU)
Closest to Neptune from Earth: 4.3 billion km / 2.7 billion miles

As a special bonus, we’ll include Pluto too, even though Pluto is not a planet anymore.

Uranus and Neptune, the Solar System’s ice giant planets. (Images from Wikipedia.)
Uranus and Neptune, the Solar System’s ice giant planets. Credit: Wikipedia Commons

Pluto:

Closest: 4.44 billion km / 2.76 billion miles (29.7 AU)
Farthest: 7.38 billion km / 4.59 billion miles (49.3 AU)
Average: 5.91 billion km / 3.67 billion miles (39.5 AU)
Closest to Pluto from Earth: 4.28 billion km / 2.66 billion miles

To learn more:

Online resources demonstrating the scale of the Solar System:

If The Moon Were Only A Pixel (Josh Worth Art & Design)
Scale Model Of Our Solar System (University of Manitoba)
Build A Solar System (Exploratorium)
Scale Solar System (Josh Wetenkamp)

Many cities and countries have also installed scale models of the Solar System, such as:

Voyage Scale Solar System (Washington, D.C.)
Sagan Planet Walk (Ithaca, N.Y.)
Maine Solar System Model
Sweden Solar System
Planet Walk (Munich, Germany)
The Solar System (Brittany, France; website in French only)
Solar System Drive (Australia)

The Planets in Our Solar System in Order of Size

Planets in our Solar system size comparison. Largest to smallest are pictured left to right, top to bottom: Jupiter, Saturn, Uranus, Neptune, Earth, Venus, Mars, Mercury. Via Wikimedia Commons.

If you’re interested in planets, the good news is there’s plenty of variety to choose from in our own Solar System. From the ringed beauty of Saturn, to the massive hulk of Jupiter, to the lead-melting temperatures on Venus, each planet in our solar system is unique — with its own environment and own story to tell about the history of our Solar System.

What also is amazing is the sheer size difference of planets. While humans think of Earth as a large planet, in reality it is dwarfed by the massive gas giants lurking at the outer edges of our Solar System. This article explores the planets in order of size, with a bit of context as to how they got that way.

A Short History of the Solar System:

No human was around 4.5 billion years ago when the Solar System was formed, so what we know about its birth comes from several sources: examining rocks on Earth and other places, looking at other solar systems in formation and doing computer models, among other methods. As more information comes in, some of our theories of the Solar System must change to suit the new evidence.

Today, scientists believe the Solar System began with a spinning gas and dust cloud. Gravitational attraction at its center eventually collapsed to form the Sun. Some theories say that the young Sun’s energy began pushing the lighter particles of gas away, while larger, more solid particles such as dust remained closer in.

Artist's conception of a solar system in formation. Credit: NASA/FUSE/Lynette Cook
Artist’s conception of a solar system in formation. Credit: NASA/FUSE/Lynette Cook

Over millions and millions of years, the gas and dust particles became attracted to each other by their mutual gravities and began to combine or crash. As larger balls of matter formed, they swept the smaller particles away and eventually cleared their orbits. That led to the birth of Earth and the other eight planets in our Solar System. Since much of the gas ended up in the outer parts of the system, this may explain why there are gas giants — although this presumption may not be true for other solar systems discovered in the universe.

Until the 1990s, scientists only knew of planets in our own Solar System and at that point accepted there were nine planets. As telescope technology improved, however, two things happened. Scientists discovered exoplanets, or planets that are outside of our solar system. This began with finding massive planets many times larger than Jupiter, and then eventually finding planets that are rocky — even a few that are close to Earth’s size itself.

The other change was finding worlds similar to Pluto, then considered the Solar System’s furthest planet, far out in our own Solar System. At first astronomers began treating these new worlds like planets, but as more information came in, the International Astronomical Union held a meeting to better figure out the definition.

Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team
Hubble image of Pluto and some of its moons, Charon, Nix and Hydra. Image Credit: NASA, ESA, H. Weaver (JHU/APL), A. Stern (SwRI), and the HST Pluto Companion Search Team

The result was redefining Pluto and worlds like it as a dwarf planet. This is the current IAU planet definition:

“A celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit.”

Size of the Eight Planets:

According to NASA, this is the estimated radii of the eight planets in our solar system, in order of size. We also have included the radii sizes relative to Earth to help you picture them better.

  • Jupiter (69,911 km / 43,441 miles) – 1,120% the size of Earth
  • Saturn (58,232 km / 36,184 miles) – 945% the size of Earth
  • Uranus (25,362 km / 15,759 miles) – 400% the size of Earth
  • Neptune (24,622 km / 15,299 miles) – 388% the size of Earth
  • Earth (6,371 km / 3,959 miles)
  • Venus (6,052 km / 3,761 miles) – 95% the size of Earth
  • Mars (3,390 km / 2,460 miles) – 53% the size of Earth
  • Mercury (2,440 km / 1,516 miles) – 38% the size of Earth

Eight planets and a dwarf planet in our Solar System, approximately to scale. Pluto is a dwarf planet at far right. At far left is the Sun. The planets are, from left, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute
Eight planets and a dwarf planet in our Solar System, approximately to scale. Pluto is a dwarf planet at far right. At far left is the Sun. The planets are, from left, Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune. Credit: Lunar and Planetary Institute

Jupiter is the behemoth of the Solar System and is believed to be responsible for influencing the path of smaller objects that drift by its massive bulk. Sometimes it will send comets or asteroids into the inner solar system, and sometimes it will divert those away.

Saturn, most famous for its rings, also hosts dozens of moons — including Titan, which has its own atmosphere. Joining it in the outer solar system are Uranus and Neptune, which both have atmospheres of hydrogen, helium and methane. Uranus also rotates opposite to other planets in the solar system.

The inner planets include Venus (once considered Earth’s twin, at least until its hot surface was discovered); Mars (a planet where liquid water could have flowed in the past); Mercury (which despite being close to the sun, has ice at its poles) and Earth, the only planet known so far to have life.

To learn more about the Solar System, check out these resources:

Planets (NASA)
Solar System (USGS)
Exploring the Planets (National Air and Space Museum)
Windows to the Universe (National Earth Science Teachers Association)
Solar System (National Geographic, requires free registration)

Astronaut Salary

Astronaut Drew Feustel reenters the space station after completing an 8-hour, 7-minute spacewalk at on Sunday, May 22, 2011. He and fellow spacewalker Mike Fincke conducted the second of the four EVAs during the STS-134 mission. Credit: NASA

Talk about a high-flying career! Being a government astronaut means you have the chance to go into space and take part in some neat projects — such as going on spacewalks, moving robotic arms and doing science that researches the nature of the human body.

Behind the glamor and the giddiness of flight, however, astronauts also need to pay their bills on Earth. How much you get paid as an astronaut depends on what agency you work for – as well as your experience, just like any other career.

The information below for NASA, the European Space Agency (ESA) and the Canadian Space Agency (CSA) is current as of April 2014, unless otherwise noted. Three agencies do not disclose salary scales online, at least in English pages: the Japan Aerospace Exploration Agency (JAXA), the Russian Federal Space Agency (Roscosmos) and the China National Space Administration (CNSA).

NASA

Astronaut Chris Cassidy training for a spacewalk in NASA's Neutral Buoyancy Laboratory. Credit: Robert Markowitz
Astronaut Chris Cassidy training for a spacewalk in NASA’s Neutral Buoyancy Laboratory. Credit: Robert Markowitz

NASA has 43 active astronauts and eight astronauts-in-training who were selected in 2013. Until basic training is completed, which takes about two years, selectees are called “astronaut candidates”. (Astronauts from other agencies, such as ESA and CSA, often join NASA selectees for basic training.) Then even after they’re selected, it could be years more before they take a spaceflight.

Some astronauts are hired as civilian employees while others come over from the military. Civilian astronauts are paid according to a government scale that ranges from classifications GS-11 to GS-14.

In 2012, employees living in Houston (where astronaut training facilities are located) make a minimum of $64,724 for a GS-11 to a maximum of $141,715 for a GS-14. As employees pick up more qualifications, responsibility and experience, their salaries increase.

Military salaries were not disclosed, but NASA said those employees from the armed forces “remain in an active duty status for pay, benefits, leave, and other similar military matters.”

European Space Agency

Expedition 36/37's Luca Parmitano, a European Space Agency astronaut, moments after landing Nov. 10, 2013. Credit: NASA/Carla Cioffi
Expedition 36/37’s Luca Parmitano, a European Space Agency astronaut, moments after landing Nov. 10, 2013. Credit: NASA/Carla Cioffi

ESA’s most recent astronaut class was selected in 2009. They have all either flown in space, or have been assigned to future missions aboard the International Space Station. Astronauts are paid between the A2 and A4 scales set by the Coordinated Organisations, a group of European intergovernmental groups.

“Upon entering the ESA Astronaut Corps, new recruits will generally be paid at the A2 level. Following the successful completion of the basic astronaut training, the recruit will be paid in accordance with the grade A3. The promotion to the grade A4 generally follows after the first spaceflight,” the European Space Agency stated.

While ESA’s website does not specify the salaries for astronauts beyond the grade, another Coordinated Organisation – called the North Atlantic Treaty Organisation – lists the annual A2 salary as 58,848 Euros ($81,404) and the A4 salary as 84,372 Euros ($116,619.)

Canadian Space Agency

David Saint-Jacques (left) with fellow Canadian astronaut trainee Jeremy Hansen. The two men were selected as astronauts in 2009. Credit: NASA
David Saint-Jacques (left) with fellow Canadian astronaut trainee Jeremy Hansen. The two men were selected as astronauts in 2009. Credit: NASA

Canada has two active astronauts, neither of which have been assigned to a spaceflight yet. The CSA does not disclose on its website how much astronauts make, but some information is available on the website of the Privy Council Office – an advisory group to Canada’s prime minister and senior officials.

Documents indicate civilian astronauts are paid according to an Astronaut Salary Scale, ranging from Grade 1 to Grade 3.

As of 2011, astronauts are paid a minimum of $89,100 Canadian ($80,897) in Grade 1 and a maximum of $174,000 Canadian ($158,470) in Grade 3. Newly minted astronaut candidates appear to move to Level 2 upon completing basic astronaut training, which takes two years, and then increase their salary with more experience.

Military astronauts are paid according to a separate scale that was not disclosed in PCO documents.

Becoming a government astronaut

The European Space Agency's astronaut class of 2009 (left to right): Andreas Mogensen, Alexander Gerst, Samantha Cristoforetti, Thomas Pesquet, Luca Parmitano, Timothy Peake. Credit: European Space Agency/S. Corvaja
The European Space Agency’s astronaut class of 2009 (left to right): Andreas Mogensen, Alexander Gerst, Samantha Cristoforetti, Thomas Pesquet, Luca Parmitano, Timothy Peake. Credit: European Space Agency/S. Corvaja

Generally, you must be the citizen of a particular country with a space program to apply as an astronaut. U.S. astronauts are U.S. citizens, European astronauts are citizens of European countries, and so forth.

Each space agency has periodic astronaut selections where they put out a call for candidates and then winnow down the list to a handful of people selected for astronaut training. The United States had its last selection in 2013, and ESA, CSA and JAXA did theirs in 2009.

While space agencies are careful not to specify certain kinds of degrees or universities for applicants, generally speaking astronauts have technical, medical or military backgrounds.

Astronauts are best known by the public for their time in space, but in reality they will spend most of their careers on the ground. International Space Station astronauts are expected to be proficient in station systems, science and spacewalks. They also must learn how to operate the Soyuz spacecraft that gets them into space, and to learn Russian since that country is a major partner of the International Space Station.

When astronauts aren’t training, they’re working to support other missions — sometimes in locations such as NASA’s Mission Control or in pools used for spacewalk training. They additionally spend hours of time doing outreach for schools and other audiences, and travelling all over the world to the various training centers used to get people ready for spaceflight.

It’s a tough career, but those who make the trek into space say the view is totally worth it.

Extravehicular Activity
Astronaut Edward White, the first American to walk in space. Image Credit: NASA

Want to learn more?

The following pages give you more information on becoming an astronaut, and what to expect once you get selected.

NASA

Astronauts
Astronaut Selection and Training
Astronaut Biographies

CSA

Canadian Astronauts
Becoming An Astronaut
Active Astronauts
Former Astronauts

ESA

Astronauts
How To Become An Astronaut
European Astronaut Biographies

JAXA

Astronauts
Astronaut Biographies

How Do We Know the Moon Landing Isn’t Fake?

How Do We Know the Moon Landing Isn't Fake?

There’s a conspiracy theory that astronauts never landed on the Moon. Is it all a conspiracy? Were the Moon landings faked? What is the evidence that we actually went to the Moon?

Apparently, there’s an organization called “NASA”, who’s done a remarkable job of sticking to their story. They say Neil Armstrong and Buzz Aldrin landed on the Moon on July 20, 1969, and set foot on the surface 6 hours later.This same organization claims there were 5 additional missions which successfully landed on the Moon, and an alleged total of 12 people went for a walk there.

Can you imagine? According to them, they spent $24 billion, which is more than $150 billion in inflation adjusted dollars. Their so-called “Apollo” program allegedly employed 400,000 people, supported by more than 20,000 companies and research institutions. I say “alleged”, as some people choose to think the Moon landings were acts of cinematic chicanery.

More than 10 years ago, Fox popularized the Moon landing conspiracy with a show called “Did We Land On The Moon?”. They revealed several pieces of evidence about the hoax and cover-up citing incorrect shadows on the Moon, lack of background stars, and more. Each of the pieces of evidence they present is wrong and easily explained once you understand the underlying science.… Or at least, that’s what they would have us believe.

Phil Plait successfully brings a NASA supporting voice to this story, explaining how the evidence against moon landings is at best, fantasy and misunderstanding. A more cynical view might be to suggest it’s a deliberate manipulation created to maintain an anti-scientific narrative to foster ignorance, mistrust and uphold a larger political agenda. Do a little search for “Phil Plait moon landing” and you’ll see him present even-handed science over any one of the arguments. In fact, if you buy into that whole “evidence” idea, he appears to successfully tear apart the conspiracy arguments.

Some still, are not convinced, possibly including you. “NASA and Phil, they’re in cahoots. Phil’s a PhD astronomer, which means he studies space, one of the letters in NASA stands for SPACE, I think it’s the A.” Coincidence? I think not. There’s collusion going on there.

The main pillar of any conspiracy requires a few select people keeping a really, really, really big secret. Looking at the numbers, the select group required to successfully fabricate the appearance of hurling metal capsules containing humans at our orbiting neighbor and then retrieving them, additionally keep their story straight for at best 45 years, and never, ever slip up… is about 400,000 humans.

Was the Moon Landing Real
Neil Armstrong on the Lunar Surface

So, there are really two sides to this story, the NASA side which is… They went to the Moon. and everyone is telling the truth. OR, they never went to the Moon, and somehow 400,000 people have never, ever, ever, ever let it slip that they made a bunch of fake moon rocks, or the rockets shot up didn’t really go anywhere. It’s all a big ruse. The thought 400,000 people have managed to keep their mouths shut is definitely the more romantic perspective. Seeing people come together to screw with everyone, and then never blabbing. This truly is a triumph of the human spirit.

When something big does happen, like the Chelyabinsk meteor, we see the evidence everywhere – for example captured on Russian dashboard cameras. For the lunar landing, NASA suggests something similar. There are independent astronomers who tracked the rockets escape from Earth’s gravity, and are either providing unsolicited, nonpartisan unfunded support of the events, or they’re in on the whole thing. The Russians, who were in a race with the Americans to be the first to set foot on the Moon, allegedly tracked the missions in horror and disappointment.

NASA just keeps sticking to this story that they sent people to the moon. In fact, they just keep on producing more of their “evidence”. They recently published high resolution images of the surface of the Moon captured by their own Lunar Reconnaissance Orbiter. Adding a whole new generation of secret keepers, who now know the secret handshake and get participate in the rigging of Oscar nights.

Apollo moon landing sites
Apollo moon landing sites

They imaged all of the alleged Apollo landing sites, and they haven’t missed any detail. You can see the landers, rovers, and even the astronauts’ footsteps. The images show that all the flags planted are still standing, except Apollo 11, which was blown over by the exhaust from the ascent engine. Or alleged exhaust from an alleged ascent engine, if you’re still thinking 400,000 people are continuing to punk the triumphs of mankind. Some might suggest that a big paycheck was sent on over to China and Japan, to have them verify the landing sites by photographing them with their own spacecraft.

According to NASA the astronauts placed retro-reflectors during their missions which reflect light directly back to Earth. Apparently these can be used this to calculate the distance to the Moon with 1 cm accuracy. So, if you want to confirm that humans went to the Moon for yourself, you could just point a high-power laser at the landing sites. Sure, there are many large independent institutions which have verified the existence of these retro-reflectors, but who knows, maybe they’re some how pawns of our silent and vigilant 400,000 co-conspirators.

What do you think? Make up a conspiracy theory for your favorite triumph of human innovation and exploration! Post it in the comments below.

Can Tatooine Be Real?

Can Tatooine Be Real?

We’re familiar with the sky on Tatooine with its twin suns. But could a planet actually orbit two stars at the same time? Could you have a planet in a multiple star system with 4, 6 or more suns?

Hey kids, you remember Star Wars right? Tatooine ring any bells? Lots of sand Tusken raiders walking single file. Banthas sweating all over the place like some crazy mammoth-goat breeding experiment gone horribly awry?
Tatooine was an arid desert planet, it had 2 suns and 3 moons. It’s not the only fictional planet to orbit multiple suns. In Nightfall by Isaac Asimov, planet Lagash had 6 suns. Could something like this be possible?

Interestingly, most stars in the Milky Way are in multiple star systems. You can easily have double, triple, or quadruple systems. There are even star clusters with hundreds or even thousands of stars. Just imagine the crazy chaotic gravitational interactions in a multiple star system.

So, could they have planets? Yes. There are circumbinary systems, where stars orbit each other their planets orbit outside, circling them both. Since the stars orbit one another so closely, it’s the gravitational equivalent of a single star. From an orbiting planet, the stars would always appear together in the sky.

To date, we have discovered 17 of these systems. Then there are wide binary systems, which are far more dangerous for planets. Here the planets orbit one main star, and there’s another star which maintains a distant orbit much further out. You don’t want to live there. The gravitational interactions are chaotic and lead to mayhem. In simulations, planets which aren’t tightly orbiting a star are ejected out of the system, or crashed into other planets or stars.

Artist's impression of the Cygnus-X1 binary. Credit: NASA / Honeywell Max-Q Digital Group / Dana Berry
Artist’s impression of the Cygnus-X1 binary. Credit: NASA / Honeywell Max-Q Digital Group / Dana Berry

We might already be detecting highly elliptical orbits from disrupted planets just like these. A triple star system was recently discovered in the constellation Cygnus: HD 188753. Here, a pair of stars are tightly bound, and these are in a wide binary arrangement with a sun-mass star. A planet closely orbits the primary star, but all other planets were likely ejected.

In the year 2012, a planet was found around Alpha Centauri B, and PH1 was the first quadruple star system to be discovered to have a planet. Kepler 47 is a multi-star, multi-planet system. Two stars orbit one another every 7.45 days. Here, the gas giant Kepler 47c orbits the stars every 303 days and is even located in the habitable zone. This sounds like perfect concept art for a Vin Diesel film, or artwork airbrushed on the side of a van.

Kepler-16b is but one example of an uncanny world.  It orbits two suns. Credit: Discovery
Kepler-16b is but one example of an uncanny world. It orbits two suns. Credit: Discovery

Finally, In 2011, the Kepler-16 system was found to have a circumbinary planet in the habitable zone. So, two stars, closely orbiting each other and a Saturn-mass, Kepler 16b orbiting the two. Astronomers informally called this a real Tatooine.

What do you think? Would you want to live on a desert world like Tatooine or Arrakis? Tell us your thoughts in the comments below.