Have We Found Rosetta’s Lost Philae Lander?

Left image from Rosetta’s OSIRIS narrow-angle camera shows the Philae lander on November 12, 2014 after it left the spacecraft for the comet's nucleus. Right: Close-up of a promising candidate for the lander photographed on December 12. Copyright: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

It’s only a bright dot in a landscape of crenulated rocks, but the Rosetta team thinks it might be Philae, the little comet lander lost since November. 

The Rosetta and Philae teams have worked tirelessly to search for the lander, piecing together clues of its location after a series of unfortunate events during its planned landing on the surface of Comet 67P/Churyumov-Gerasimenko last November 12.

The journey of Rosetta’s Philae lander as it approached and then rebounded from its first touchdown on Comet 67P/Churyumov–Gerasimenko on November 12, 2014. The mosaic comprises a series of images captured by Rosetta’s OSIRIS camera over a 30 minute period spanning the first touchdown. The time of each of image is marked on the corresponding insets and is in Greenwich Mean Time. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Mosaic photo capturing Philae’s flight above the comet’s nucleus and one of its three touchdowns on November 12, 2014. The images cover a 30 minute period spanning the first touchdown. The Greenwich Mean Time time of each of image is marked on the corresponding insets. Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Philae first touched down at the Agilkia landing site that day, but the harpoons that were intended to anchor it to the surface failed to work, and the ice screws alone weren’t enough to do the job. The lander bounced after touchdown and sailed above the comet’s nucleus for two hours before finally settling down at a site called Abydos a kilometer from its intended landing site.

No one yet knows exactly where Philae is, but an all-out search has finally turned up a possible candidate.

Approximate locations of five lander candidates initially identified in high-resolution photos taken in December 2014, from a distance of about 12.4 miles (20 km) from the comet's center. The candidates identify Philae-sized features about 3-6 feet (1-2 meters) across. The contrast has been stretched in some of the images to better reveal the candidates. All but one of these candidates (top left) have subsequently been ruled out. The candidate at top left lies near to the current CONSERT ellipse (see below). Credit: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0; insets: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Approximate locations of five lander candidates initially identified in high-resolution photos taken in December 2014, from a distance of about 12.4 miles (20 km) from the comet’s center. The candidates identify Philae-sized features about 3-6 feet (1-2 meters) across. The contrast has been stretched in some of the images to better reveal the candidates. All but one of them (top left) have subsequently been ruled out. The candidate at top left lies near to the current CONSERT ellipse (see below). Credit: ESA/Rosetta/NavCam – CC BY-SA IGO 3.0; insets: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

Rosetta’s navigation and high-resolution cameras identified the first landing site and also took several pictures of Philae as it traveled above the comet before coming down for a final landing. Magnetic field measurements taken by an instrument on the lander itself also helped establish its location and orientation during flight and touchdown. The lander is thought to be in rough terrain perched up against a cliff and mostly in shadow.

High resolution images of the possible landing zone were taken by Rosetta back in December when it was about 11 miles (18 km) from the comet’s surface. At this distance, the OSIRIS narrow-angle camera has a resolution of 13.4 inches (34 cm) per pixel. The body of Philae is just 39 inches (1-meter) across, while its three thin legs extend out by up to 4.6 feet (1.4-meters) from its center. In other words, Philae’s just a few pixels across — a tiny target but within reach of the camera’s eye.

The current 50 x 525 feet (16 x 160 m) CONSERT ellipse overlaid on an OSIRIS narrow-angle camera image of the same region. It's believed Philae is located within or near this ellipse. Copyright Ellipse: ESA/Rosetta/Philae/CONSERT; Image: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
The current 50 x 525 feet (16 x 160 m) CONSERT ellipse overlaid on an OSIRIS narrow-angle camera image of the same region. It’s believed Philae is located within or near this ellipse. Copyright Ellipse: ESA/Rosetta/Philae/CONSERT; Image: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

The candidates in the photo above are “all over the place.” To narrow down the location, the Rosetta team used radio signals sent between Philae and Rosetta as part of the COmet Nucleus Sounding Experiment or CONSERT after the final touchdown. According to Emily Baldwin’s recent posting on the Rosetta site:

“Combining data on the signal travel time between the two spacecraft with the known trajectory of Rosetta and the current best shape model for the comet, the CONSERT team have been able to establish the location of Philae to within an ellipse roughly 50 x 525 feet (16 x 160 meters) in size, just outside the rim of the Hatmehit depression.”

Zooming in towards the current CONSERT ellipse, a number of bright dots are seen in the region. As only one (at most) of these could be the lander, the majority must be associated with surface features on the comet nucleus. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Zooming in to the CONSERT ellipse, a number of bright dots are seen in the region. Since only one could be the lander, the majority must be associated with surface features on the comet nucleus.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

So what can we see there? Zooming in closer, a number of glints or bright spots appear, and they change depending on the viewing angle. But among those glints, one might be Philae. What mission scientists examined images of the area under the same lighting conditions before Philae landed and then put them side by side with those taken after November 12. That way any transient glints could be eliminated, leaving what’s left as a potential candidate.

‘Before’ and ‘after’ comparison images of a promising candidate located near the CONSERT ellipse as seen in images from Rosetta. Each box covers roughly 65x65 feet (20 x 20 m) on the comet. The left-hand image shows the region as seen on 22 October (before the landing of Philae) from a distance of about 6 miles from the center of the comet, while the center and right-hand images show the same region on December 12 and 13 from 12 miles (20 km) after landing. The candidate is only seen in the two later pictures. Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
‘Before’ and ‘after’ comparison images of a promising candidate located near the CONSERT ellipse as seen in images from Rosetta. Each box covers roughly 65×65 feet (20 x 20 m) on the comet. The left-hand image shows the region as seen on 22 October (before the landing of Philae) from a distance of about 6 miles from the center of the comet, while the center and right-hand images show the same region on December 12 and 13 from 12 miles (20 km) after landing. The candidate is only seen in the two later pictures.
Credits: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

In photos taken on December 12 and 13, a bright spot is seen that didn’t appear in the earlier photos. Might this be Philae? It’s possible and the best candidate yet. But it may also be a new physical feature that developed between November and December. Comet surfaces are forever changing as sunlight sublimates ice both on and beneath the surface

For now, we still can’t be sure if we’ve found Philae. Higher resolution pictures will be required as will patience. The comet’s too close to the Sun right now and too active. Rubble flying off the nucleus could damage Rosetta’s instruments. Mission scientists will have to wait until well after the comet’s August perihelion (closest approach to the Sun) for a closer look.

Comet 67P/Churyumov-Gerasimenko photographed from about 125 miles away on June 5 looks simply magnificent. Only two months from perihelion, the comet shows plenty of jets. One wonders what the chances are of one erupting underneath Philae and sending it back into orbit again. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0
Magnificent! Comet 67P/Churyumov-Gerasimenko photographed by Rosetta from about 125 miles away on June 5, 2015. Now only two months from perihelion, the comet’s crazy with jets of dust and gas. One wonders what the chances are of a gassy geyser erupting beneath or near Philae and sending it back into orbit again. Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0

Meanwhile, mission teams remain hopeful that with increasing sunlight at the comet this summer, Philae’s solar panels will recharge its batteries and the three-legged lander will wake up and resume science studies. Three attempts have been made to contact Philae this spring and more will be made but so far, we’ve not heard a peep.

For the time being, Philae’s like that lost child in a shopping mall. The search party’s been dispatched, clues have been found and it’s only a matter of time before we see her smiling face again.

UK Amateur Recreates the Great Red Spot’s Glory Days

Graphical comparison showing how Jupiter's Great Red Spot has shrunk in the past 125 years. Credit: Damian Peach

Maybe it’s too soon for a pity party, but the profound changes in the size and prominence of Jupiter’s Great Red Spot (GRS) in the past 100 years has me worried. After Saturn’s rings, Jupiter’s big bloody eye is one of astronomy’s most iconic sights.

This titanic hurricane-like storm has charmed earthlings since Giovanni Cassini first spotted it in the mid-1600s.  Will our grandchildren turn their telescopes to Jove only to see a pale pink oval like so many others rolling around the planet’s South Tropical Zone?

Maybe.

Jupiter’s Great Red Spot is a cyclone larger than two Earths. (photomontage ©Michael Carroll)
Jupiter’s Great Red Spot is a cyclone that’s presently about 1.2 times as big as Earth. As recently as 1979, it was twice Earth’s diameter as illustrated here.  Photomontage ©Michael Carroll

An inspired image prompted this sad train of thought. UK astrophotographer Damian Peach came up with an ideal way to depict how the GRS  would look to us now if it we could see it as it was in 1890, 125 years ago. Those were the glory days for the “Eye of Jupiter” as Cassini was fond of calling it. With a diameter of 22,370 miles (36,000 km), the GRS spanned nearly three Earths wide. What a sight it must have been in nearly any telescope.

Peach compared measurements of the Spot in black and white photos taken at Lick Observatory in California in 1890-91 with a photo he took on April 13 this year. He then manipulated his April 13 data using the Lick photos and WINJUPOS (Jupiter feature measuring program) to carefully match the storm to its dimensions and appearance 125 years ago. Voila! Now we have a good idea of what we missed by being born too late.

At left, Photograph of Jupiter's enormous Great Red Spot in 1879 from Agnes Clerk's Book " A History of Astronomy in the 19th Century".
At left,  A crude photograph of Jupiter’s enormous Great Red Spot in 1879 from Agnes Clerk’s Book ” A History of Astronomy in the 19th Century”.

“A century ago, it truly was deserving of its name!” wrote Peach.

Painting by Italian artist Donato Creti showing a telescopic view of Jupiter above a nighttime landscape. The Great Red Spot is clearly visible.
Painting by Italian artist Donato Creti showing a telescopic view of Jupiter in 1711 above a nighttime landscape. The Great Red Spot is clearly visible above center.

The shrinking of the Great Red Spot isn’t breaking news. You read about it here in Universe Today more than year ago. Before that, Jupiter observers had grumbled for years that the once-easy feature had become anemic and not nearly as obvious as once remembered. Astronomers have been following its downsizing since the 1930s.

These two photos, taken by Australian amateur astronomer Anthony Wesley, show the dramatic fading of Jupiter's South Equatorial Belt (SEB) from a year ago. The north belt remains dark and easy to see in a small telescope. The red oval is the Great Red Spot, a hurricane-like weather system some 2 1/2 times the size of the Earth.
Dramatic fading of Jupiter’s South Equatorial Belt (SEB) between 2009 and 2010. The belt has since returned to view. The Red Spot is also seen in both images. Credit: Anthony Wesley

That doesn’t mean it’s necessarily going away, though if it did — at least temporarily — it wouldn’t be the first time. The Spot vanished in the 1680s only to reappear in 1708. Like clouds and weather fronts that keeps things lively on Earth, Jupiter’s atmosphere constantly cooks up new surprises. The entire South Equatorial Belt, one of Jupiter’s two most prominent “stripes”, has taken a leave of absence at least 17 times since the invention of the telescope, the last in 2010.

Reprocessed view by Bjorn Jonsson of the Great Red Spot taken by Voyager 1 in 1979 reveals an incredible wealth of detail.
The Great Red Spot photographed by Voyager 1 in 1979 and reprocessed by Bjorn Jonsson shows an incredible wealth of detail. Credit: NASA

Perhaps we should turn the question around? How has the Red Spot managed to last this long? Hurricanes on Earth have lifetimes measured in days, while this whirling vortex has been around for hundreds of years. Any number of things should have killed it: loss of energy through radiation of heat to outer space, or energy-sapping turbulence from nearby jet streams. But the Eye persists. So what keeps it alive? Astronomers think the storm might gain energy by devouring smaller vortices, those small white dots and ovals you see in high resolution photos of the planet. Vertical winds that transport hot and cold gases in and out of the Spot may also restore its vigor.

Just in case it disappears unexpectedly, take one last look this observing season. Jupiter’s currently getting lower in the western sky as it approaches Venus for its grand conjunction on June 30. Below are times (Central Daylight or CDT) when it crosses or transits the planet’s central meridian. The GRS will be easiest to see for a 2-hour interval starting an hour before the times shown. It’s located in the planet’s southern hemisphere just south of the prominent South Equatorial Belt. Add an hour for Eastern time; subtract one hour for Mountain and two hours for Pacific. A complete list of transit times can be found HERE.

* June 13 at 8:58 p.m.
* June 18 at 12:16 a.m.
* June 18 at 8:08 p.m.
* June 20 at 9:47 p.m.
* June 22  at 11:26 p.m.
* June 25 at 8:57 p.m.
* June 27 at 10:36 p.m.

 

 

Ceres Bright Spots Keep Their Secret Even From 2,700 miles Up

The brightest spots on dwarf planet Ceres are seen in this image taken by NASA's Dawn spacecraft on June 6, 2015. This is among the first snapshots from Dawn's second mapping orbit, which is 2,700 miles (4,400 kilometers) in altitude. The resolution is 1,400 feet (410 meters) per pixel. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Don’t get me wrong. I love this new photo. Dawn snapped it from its second mapping orbit from 2,700 miles up on June 6. The number of craters and the detail visible in the parallel troughs snaking through the scene are breathtaking. That’s why I hate to niggle about the white spots.

While they appear larger and sharper than images taken in May from a greater distance, they’re too bright to show much new detail. I can’t help but wonder if mission scientists might adjust the exposure a bit the next time around.

Tighter crop on the 55-mile crater that's home to the cluster of white spots. Credit:
Tighter crop on the 55-mile (90-km) crater that’s home to the cluster of white spots. I applied a small amount of sharpening and toned down the spots just a little. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

When photographing bright objects here on Earth, we expose “for the highlights” or the bright areas in photos to avoid overexposure and loss of detail.

What a satisfying view! NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
What a satisfying view! This image, also taken on June 6, shows a large crater in Ceres’ southern hemisphere as well as cracks and radial fractures possibly associated with impacts. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Naturally, when you try to capture details in something bright, your background will go dark. But that might be what’s needed here – a change in exposure to reveal more detail in the spots at the expense of the landscape. Doubtless NASA will release enlarged and detailed images of these enigmatic dots later this summer. Just call me impatient.

Scientists still don’t understand the nature of the spot cluster, but reflective ice or salt remain the strongest possibilities.

What is this - the Moon? A view of craters in Ceres' northern hemisphere from June 6, 2015. Credit: Bright Spots Shine in Newest Dawn Ceres Images VIR Image of Ceres, May 2015Bright Spots in Ceres' Second Mapping OrbitCeres' Southern Hemisphere in Survey Ceres' Northern Hemisphere in Survey Craters in the northern hemisphere of dwarf planet Ceres are seen in this image taken by NASA's Dawn spacecraft on June 6, 2015. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
A lunar-like landscape in Ceres’ northern hemisphere photographed on June 6, 2015. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

“The bright spots in this configuration make Ceres unique from anything we’ve seen before in the solar system,” said Chris Russell, principal investigator for the Dawn mission. “The science team is working to understand their source. Reflection from ice is the leading candidate in my mind, but the team continues to consider alternate possibilities, such as salt.”

Images from Dawn's visible and infrared mapping spectrometer (VIR) show a portion of Ceres' cratered northern hemisphere, taken on May 16, 2015. From top to bottom, the views include a black-and-white image, a true-color view and a temperature image. The true-color view contains reddish dots that are image artifacts, which are not part of Ceres' surface.
Images from Dawn’s visible and infrared mapping spectrometer (VIR) show a portion of Ceres’ cratered northern hemisphere, taken on May 16, 2015 from 4,500 miles (7,300 km) away. From top to bottom, the views include a black-and-white image, a true-color view and a temperature image. In the bottom infrared view, the lightest areas are hottest and darkest are the coolest. Credit: NASA/JPL-Caltech/UCLA/ASI/INAF

It’s interesting to compare and contrast Ceres with Dawn’s first target asteroid, Vesta. Craters of every size dominate both small worlds, but Ceres shows evidence of a more activity in the form of relaxed crater rims (possibly due to ice deformation), landslides and collapsed structures.

Dawn takes about three days to orbit at its current 2,700 mile altitude. It will continue to take photos and make science observations until dropping into a new lower altitude of 900 miles (1, 450 km) in early August.

Leonard Nimoy’s Legacy Lives On in the Asteroid Belt

On June 2, 2015 a small asteroid - Nimoy - was named for Leonard Nimoy who played the fictional Mr. Spock in Star Trek. Credit: NASA/JPL

“Fascinating, Captain.” If he were alive today, Leonard Nimoy, who played the half Vulcan-half human Mr. Spock in the Star Trek TV and movies series, would undoubtedly have raised an eyebrow and uttered a signature “fascinating” at the news this week that an asteroid now bears his name.

4864 Nimoy, a mountain-sized rock roughly 6 miles (10 km) across, orbits the Sun once every 3.9 years within the inner part of the main asteroid belt between Mars and Vulcan, er Jupiter. 

Here’s the announcement from the Minor Planet Center made on June 2:

Leonard Nimoy as Mr. Spock. Credit: CBS Television
Leonard Nimoy as Mr. Spock. Credit: CBS Television

(4864) Nimoy = 1988 RA5
Discovered 1988 Sept. 2 by H. Debehogne at the European Southern Observatory.
Leonard Nimoy (1931–2015) was an American actor, film director and poet. Best known for his portrayal of the half-Vulcan/half-human science officer Spock in the original “Star Trek” TV series and subsequent movies, Nimoy wrote two autobiographies:
I Am Not Spock (1975) and I Am Spock (1995).
M.P.C. 94384

4864 Nimoy was discovered by Belgian astronomer Henri Debehogne on September 2, 1988 and given the provisional designation 1988 RA5. This month, Spock’s “star” doesn’t get any brighter than 16th magnitude as it slowly tracks from Capricornus into Sagittarius in the late night sky. Come mid-July, amateurs with 14-inch or larger telescopes might glimpse it when it brightens to magnitude 15.


Spock – Fascinating!

Though portrayed as logical to a fault, Spock’s chilly exterior hid a heart as big as Jupiter. He was the hero of every nerd, and the perfect foil to Shatner’s Captain Kirk’s emotional excesses. Nimoy’s character showed that command of the facts and rational thinking made one very useful in dangerous and difficult situations. And great to poke fun at.


A few “Best of Spock” moments

While Leonard Nimoy’s name will forever tumble about the asteroid belt, his fictional character got there before him. Or did it? 2309 Mr. Spock (former 1971 QX1) was discovered by James Gibson on August 16, 1971. An outer main belt asteroid about 13 miles (21 km) across and orbiting the Sun every 5.23 years, it’s actually not named for the Star Trek character. Nope. Gibson named it for his cat.

The sky facing southeast around 2 a.m. in early June. Leonard Nimoy's asteroid is currently in Capricornus near its border with Sagittarius. Source: Stellarium
The sky facing southeast around 2 a.m. in early June. Leonard Nimoy’s asteroid is currently in Capricornus where it borders with Sagittarius. Source: Stellarium

The act prompted the International Astronomical Union (IAU) in 1985 to ban the use of pet names for asteroids. Aw, come on IAU, where’s your sense of humor? Then again, Nimoy’s Spock might have considered the new rule quite logical.

Chaos Reigns At Pluto’s Moons

This set of computer modeling illustrations of Pluto’s moon Nix shows how the orientation of the moon changes unpredictably as it orbits the “double planet” Pluto-Charon. Credit: NASA/ESA/M. Showalter (SETI)/G. Bacon (STScI)


Simulation of Pluto’s moon Nix sped up so that one orbit takes 2 seconds instead of 25 days.

Wobbling and tumbling end-over-end like a badly thrown football, Pluto’s moons are in a state of orbital chaos, say scientists. Analysis of data from NASA’s Hubble Space Telescope shows that two of Pluto’s moons, Nix and Hydra, wobble unpredictably. If you lived on either, you’d never know when and in what direction the Sun would rise. One day it would pop up over your north horizon, the next over the western. Every sunset would be like a proverbial snowflake — not a single one the same.

Watch the video, and you’ll see what I mean. Not only does the moon totter, but the poles flip. If there was ever a solar system body to meet the criteria of end-of-the-world, doomsday crowd, Nix is it. The moons wobble because they’re embedded in the bizarro gravity field of the Pluto-Charon duo. Charon is officially the dwarf planet’s largest moon, but the two bodies act more like a double planet because Charon’s so huge.

OK, it’s only 750 miles (1,212 km) in diameter, but that’s half as big as Pluto. Imagine if our moon was twice as big as it is now, and you get the picture.

Charon is large compared to Pluto, so the orbit about their common center of gravity located in the space between the two bodies. Credit: Wikipedia
Charon is large compared to Pluto, so they orbit about their common center of gravity located in the space between the two bodies. Credit: Wikipedia

As the duo dances an orbital duet about their common center of gravity, their variable gravitational field sends the smaller moons tumbling erratically. The effect is enhanced even more by their irregular and elongated shapes. It’s likely Pluto’s other two moons, Kerberos and Styx, are in a similar situation.

Because their moment to moment motions are essentially unpredictable, scientists describe their behavior is chaotic. Saturn’s moon, Hyperion, also tumbles chaotically.

Pluto (upper right) and its largest moon Charon form a "double planet" as seen in this photo taken by NASA's New Horizons probe which is set to make a close flyby of the Pluto system on July 14. Credit: NASA / NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute
Pluto (upper right) and its largest moon Charon form a “double planet” as seen in this photo taken by NASA’s New Horizons probe which is set to make a close flyby of the Pluto system on July 14. Credit: NASA / NASA / Johns Hopkins University Applied Physics Laboratory / Southwest Research Institute

The discovery was made by Mark Showalter of the SETI Institute and Doug Hamilton of the University of Maryland using the Hubble Space Telescope and published in today’s issue of the journal Nature. Showalter also found three of Pluto’s moons are presently locked together in resonance, meaning there’s a precise ratio for their orbital periods.

“If you were sitting on Nix, you would see that Styx orbits Pluto twice for every three orbits made by Hydra,” said Hamilton.

That’s not all. If you’ve ever grilled with charcoal, you’d have a good idea what Kerberos looks like. Dark as one those briquettes. The other moons are as bright as sand because they’re mostly made of ice. Astronomers had thought that material blasted off the moons by meteorite impacts should make them all the same basic tone, so what’s up with Kerberos? No one knows.

This illustration shows the scale and comparative brightness of Pluto’s small satellites. The surface craters are for illustration only and are not real. Credits: NASA/ESA/A. Feild (STScI)
This illustration shows the scale and comparative brightness of Pluto’s small satellites. The surface craters are for illustration only and are not real.
Credits: NASA/ESA/A. Feild (STScI)

Pluto’s moons are thought to have formed during a collision long ago between the dwarf planet and a similar-sized object. The smash-up created lots of smaller bodies that eventually took up orbits about the present-day Pluto. Outside of Charon, the biggest leftover, the other moons measure in the tens of miles across. The four little ones — Nix, Styx, Kerberos and Hydra — were discovered with the Hubble scope during surveys to better map the Pluto system before New Horizons arrives next month. No one would be surprised if even more itty-bitty moons are found as we draw ever closer to the dwarf planet.

Allergies? Must Be Pollen Corona Season Again

A multi-ringed, oval shaped corona around the Sun on May 30, 2015 seen from northern Minnesota. The white spots are aspen seeds better known as "cotton fluff". Credit: Bob King

Don’t be surprised if you look up in the Sun’s direction and squint with itchy, watery eyes. You might be staring into billows of tree pollen wafting through your town. It’s certainly been happening where I live.

When conditions are right, billions of microscopic pollen grains consort to create small, oval-shaped rings around a bright Moon during the peak of the spring and early summer allergy season. With the Full Moon coming up this week, there’s no better time to watch for them. 

Pollen grains from a variety of different common plants including sunflower, morning glory, prairie hollyhock and evening primrose. Credit: Dartmouth Electron Microscope Facility, Dartmouth College
Pollen grains from a variety of different common plants including sunflower, morning glory, prairie hollyhock and evening primrose magnified 500x and colorized.  The green, bean-shaped grain at lower left is 0.05 mm across. Credit: Dartmouth Electron Microscope Facility

Because they’re often lost in the glare of the Sun or Moon, the key to finding one is to hide the solar or lunar disk behind a thick tree branch, roof or my favorite, the power pole. Look for a telltale oval glow, sometimes tinted with rainbow colors, right up next to the Moon or Sun’s edge. Common halos, those that form when light is refracted by ice crystals, span 44° compared to pollen coronas, which measure just a few degrees in diameter.

To see or photograph coronas, you need plenty of light. The Sun’s ideal, but so is the Moon around full. Fortunately, that happens on June 2, neatly fitting into the sneezing season. Last night, the same grains — most likely pine tree pollen — also stoked a lunar corona. Once my eyes were dark adapted and the Moon hidden by an arboreal occulting instrument (tree branch), it was easy to see.

A lunar pollen corona on May 30, 2015. The Moon was hidden by a utility pole.  Like the solar version, this one is elongated too. The shape is caused by pollen grains' elongated shape and the fact that they tend to orient themselves as they drift in the wind. Credit: Bob King
A lunar pollen corona on May 30, 2015. The Moon was hidden by a utility pole. Like the solar version, this one was also oval and measured about 3.5° across. The shape is caused by elongated pollen grains fact that orient themselves as they drift in the wind. Credit: Bob King

One of things you’ll notice right away about these biological bullseyes is that they’re not circular. Pollen coronas are oval because the pollen particles are elongated rather than spherical like water droplets. When light from the moon or sun strikes pollen, the minute grains diffract the light into a series of closely-spaced colored rings. I’ve read that pine and birch produce the best coronas, but spruce, alder and and others will work, too.

And here’s another amazing thing about these coronas. You don’t need a transparent medium to produce them. No ice, no water. All that’s necessary are very small, similarly-shaped objects. Light waves are scattered directly off their surfaces; the waves interfere with one another to create a diffraction pattern of colored rings.

A lunar pollen corona photographed on June 22, 2008 displays “bumps” or extensions at approximately 90° angles around its periphery. Credit: Bob King

Pollen coronas tend to become more elongated when the Sun or Moon is closer to the horizon, so look be on the lookout during those times for more extreme shapes. For some reason I’ve yet to discover,  pollen disks sometimes exhibit “bumps” or extensions at their tops, bottoms and sides.

So many of us suffer from allergies, perhaps the glowing presence of what’s causing all the inflammation will serve as partial compensation for our misery.

Pluto Reveals Many New Details In Latest Images

These images show Pluto in the latest series of New Horizons Long Range Reconnaissance Imager (LORRI) photos, taken May 8-12, 2015. Hints of possible complex surface geology and the polar cap first seen in April are visible. Credit: NASA

Hey Pluto, it’s great to see your face! Since sending its last batch of images in April, NASA’s New Horizons probe lopped off another 20 million miles in its journey to the mysterious world.  Among the latest revelations: the dwarf planet displays a much more varied surface and the bright polar cap discovered earlier this spring appears even bigger.

Comparison of the April image of one hemisphere of Pluto with nearly the same hemisphere photographed in May. have been rotated to align Pluto's rotational axis with the vertical direction (up-down), as depicted schematically in the center panel. Between April and May, Pluto appears to get larger as the spacecraft gets closer, with Pluto's apparent size increasing by approximately 50 percent. Pluto rotates around its axis every 6.4 Earth days, and these images show the variations in Pluto's surface features during its rotation. Credit: NASA
Comparison of the April image of one hemisphere of Pluto with the same hemisphere photographed in May. The photos have been rotated to align Pluto’s rotational axis with the vertical direction (up-down), as shown schematically in the center panel. Between April and May, Pluto grew larger as the spacecraft got closer, with Pluto’s apparent size increasing by approximately 50%. Pluto rotates around its axis every 6.4 Earth days; this and the images below show the variations in Pluto’s surface features during its rotation. Credit: NASA

“These new images show us that Pluto’s differing faces are each distinct; likely hinting at what may be very complex surface geology or variations in surface composition from place to place,” said New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute in Boulder, Colorado.

Compare Pluto's polar cap (white spot at top of the globe), first seen in April (left) with the latest image taken on May 10. Approximately the same face of Pluto is shown in both images. The cap's extent varies with longitude. Credit: NASA
Compare Pluto’s polar cap (white spot at top of the globe), first seen in April (left) with the latest image taken on May 10. Approximately the same face of Pluto is shown in both images. The cap’s extent varies with longitude. Credit: NASA

Mission scientists caution against over-interpreting some of the smaller details. The photos have been processed using a method called deconvolution, which strips away the out-of-focus information to enhance features on Pluto. Deconvolution can occasionally add “false” details or artifacts, so the smallest features in these pictures will need to be confirmed by images taken from closer range in the next few weeks.

Pluto compared on
Pluto compared on April 16, 2015 and May 12. Credit: NASA

Compared to recent photos of Ceres, the other dwarf planet in the limelight this season, Pluto shows only light and dark blotches. That’s how Ceres started out too. All those variations in tone and texture suggest a fascinating and complex surface. And it’s clear that the polar cap — whatever it might ultimately be — is extensive and multi-textured. The images were taken from a little less than 50 million miles (77 million km) away or about the same distance Mars is from Earth during a typical opposition.

New Horizons current position along with
New Horizons current position and particulars on May 28, 2015. Credit: NASA

Watch for dramatic improvements in the images as New Horizons speeds toward its target, covering 750,000 miles per day until closest approach on July 14. By late June, they’ll have four times the resolution; during the flyby that will improve to 5,000 times. The spacecraft is currently 2.95 billion miles from Earth. Light, traveling at 186,00o miles per second, requires 8 hours and 47 minutes – the length of a typical work day – to make the long round trip.

Ceres Bright Spots Sharpen But Questions Remain

Latest image released by NASA of the spatter of white spots in the 57-mile-wide crater on the dwarf planet Ceres. Scientists with the Dawn mission believe they're highly reflective material, likely ice. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The latest views of Ceres’ enigmatic white spots are sharper and clearer, but it’s obvious that Dawn will have to descend much lower before we’ll see crucial details hidden in this overexposed splatter of white dots. Still, there are hints of interesting things going on here.

Comparison of the most recent photos of the white spots taken Dawn's current 4,500 miles vs. 8,400 miles on May 3. Credit:
Comparison of the most recent photos of the white spots taken Dawn’s current 4,500 miles vs. 8,400 miles on May 4. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The latest photo is part of a sequence of images shot for navigation purposes on May 16, when the spacecraft orbited 4,500 miles (7,200 km) over the dwarf planet. Of special interest are a series of troughs or cracks in Ceres crust that appear on either side of the crater housing the spots.

While the exact nature of the spots continues to baffle scientists, Christopher Russell, principal investigator for the Dawn mission, has narrowed the possibilities: “Dawn scientists can now conclude that the intense brightness of these spots is due to the reflection of sunlight by highly reflective material on the surface, possibly ice.”

Two views of an impact exposing water ice on Mars. The bright material conspicuous in this image was excavated from below the surface and deposited nearby by a 2008 impact that dug a crater about 8 meters (26 feet) in diameter. The extent of the bright patch was large enough for the Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA's Mars Reconnaissance Orbiter, to obtain information confirming the material to be water ice. Credit: NASA/JPL-Caltech/University of Arizona
The bright material in both photos was excavated from below the surface and deposited nearby by a 2008 impact that dug a crater about 26 feet (8 meters) in diameter. The extent of the bright patch was large enough for the Compact Reconnaissance Imaging Spectrometer for Mars, an instrument on NASA’s Mars Reconnaissance Orbiter, to obtain information confirming it as water ice. Credit: NASA/JPL-Caltech/University of Arizona

We’ve seen ice exposed by meteorite / asteroid impact before on Mars where recent impacts have exposed fresh ice below the surface long hidden by dust. In most cases the ice gradually sublimates away or covered by dust over time. But if Ceres’ white spots are ice, then we can reasonably assume they must be relatively new features otherwise they would have vaporized or sublimated into space like the Martian variety.

NASA's Hubble Space Telescope took these images of the asteroid 1 Ceres over a 2-hour and 20-minute span, the time it takes the Texas-sized object to complete one quarter of a rotation.
NASA’s Hubble Space Telescope took these images of the asteroid 1 Ceres over a 2-hour and 20-minute span, the time it takes the Texas-sized object to complete one quarter of a rotation. The observations were made in visible and in ultraviolet light. Hubble took the snapshots between December 2003 and January 2004. Credit: NASA, ESA, J. Parker, P. Thomas and L. McFadden

Much has been written – including here – that these spots are the same as those photographed in much lower resolution by the Hubble Space Telescope in 2004. But according the Phil Plait, who writes the Bad Astronomy blog, that’s false. He spoke to Joe Parker, who was part of the team that made the 2004 photos, and Parker says the Dawn spots and Hubble spots are not the same.

Could the spots have formed post-2004 or were they simply too small for Hubble to resolve them? That seems unlikely. The chances are slim we’d just happen to be there shortly after such a rare event occurred? And what happened to Hubble’s spot – did it sublimate away?


Video compiled from Dawn’s still frames of Ceres by Tom Ruen. Watch as the spots continue to reflect light even at local sunset.

Watching the still images of Ceres during rotation, it’s clear that sunlight still reflects from the spots when the crater fills with shadow at sunset and sunrise. This implies they’re elevated, and as far as I can tell from the sunrise photo (see below), the brightest spots appear to shine from along the the side of  a hill or mountain. Could we be seeing relatively fresh ice or salts after recent landslides related to impact or tectonic forces exposed them to view?

 The crater with white spots shortly after sunrise. The bright spots appear to be on a central mountain. It's unclear if the pair of spots below the bright pair are situated on a rise or the flat floor. Credit: NASA
Single from from the video shows the white spots shortly after sunrise. The brightest appear to be located on a central mountain peak.  It’s unclear if the pair of spots below the bright pair are situated on a rise or the flat floor. Credit: NASA

Let’s visit another place in the Solar System with an enigmatic white spot, or should I say, white arc. It’s Wunda Crater on Uranus’ crater-blasted moon Umbriel. The 131-mile-wide crater, situated on the moon’s equator, is named for Wunda, a dark spirit in Aboriginal mythology. But on its floor is a bright feature about 6 miles (10 km) wide. We still don’t know what that one is either!

The moon Umbriel,  727 miles in diameter, with Wunda Crater and its bright internal ring of unknown origin. The moon's equator is vertical in this photo. Credit: NASA
The moon Umbriel, 727 miles in diameter, with Wunda Crater and its bright internal ring of unknown origin. The moon’s equator is vertical in this photo. Credit: NASA

What Makes Mars Sunsets Different from Earth’s?

Sunset photographed from Gale Crater by the Mars Curiosity rover on April 15, 2015. The four images shown in sequence here were taken over a span of 6 minutes, 51 seconds using the left eye of the rover's Mastcam. Credit: NASA/JPL-Caltech

Even robots can’t tear their eyes from a beautiful sunset. NASA’s Mars Curiosity rover pointed its high resolution mast camera at the setting Sun to capture this 4-image sequence on April 15 at the conclusion of the mission’s 956th Martian day. While it resembles an earthly sunset, closer inspection reveals alien oddities.

A day on Mars lasts 24 hours and 39 minutes, so sunrise and sunset follow nearly the same rhythm as they do on Earth. When we eventually establish a base there, astronauts should be able to adjust to the planet’s day-night rhythm with relative ease. Jet lag would be worse.

But sunsets and sunrises offer a different palette of colors than they would on Earth. For starters, the Sun only radiates the equivalent of a partly cloudy afternoon’s worth of light. That’s because Mars’ average distance from the Sun is 141.6 million miles or about half again Earth’s distance. Increased distance reduces the intensity of sunlight.

Not only that, but the solar disk shrinks from the familiar 0.5° across we see from Earth to 0.35° at Mars. Here on the home planet, your little finger extended at arm’s length would cover the equivalent of two Suns. On Mars it would be three!

Wide view of sunset over Gusev Crater taken by NASA's Spirit Rover in 2005. Both blue aureole and pink sky are seen. Because of the fine nature of Martian dust, it can scatter blue light coming from the Sun forward towards the observer. Credit: NASA/JPL-Caltech
Wide view of sunset over Gusev Crater taken by NASA’s Spirit Rover in 2005. Both blue aureole and pink sky are seen. Because of the fine nature of Martian dust, it can scatter blue light coming from the Sun forward towards the observer. Credit: NASA/JPL-Caltech

What about color? Dust and other fine particles in the atmosphere scatter the blues and greens from the setting or rising Sun to color it yellow, orange and red. When these tints are reflected off clouds, sunset colors are amplified and spread about the sky, making us reach for that camera phone to capture the glory.

Things are a little different on Mars. The ever-present fine dust in the Martian atmosphere absorbs blue light and scatters the warmer colors, coloring the sky well away from the Sun a familiar ruddy hue. At the same time, dust particles in the Sun’s direction scatter blue light forward to create a cool, blue aureole near the setting Sun. If you were standing on Mars, you’d only notice the blue glow when the Sun was near the horizon, the time when its light passes through the greatest depth of atmosphere and dust.

This was the first sunset observed in color by Curiosity. The color has been calibrated and white-balanced to remove camera artifacts. Mastcam sees color much the way the human eye does, although it's a little less sensitive to blue. The Sun's disk itself appears pink because all the cooler colors have been scattered away, similar to why the Sun on Earth appears orange or red when near the horizon. Notice the rocky ridge in the foreground. Credit: NASA/JPL-Caltech/MSSS/Texas A&M Univ.
This was the first sunset observed in color by Curiosity. The color has been calibrated and white-balanced to remove camera artifacts. Mastcam sees color much the way the human eye does, although it’s a little less sensitive to blue. The Sun’s disk itself appears pink because all the cooler colors have been scattered away, similar to why the Sun on Earth appears orange or red when near the horizon. Notice the individual rocks poking up from the ridge in the foreground. Credit: NASA/JPL-Caltech/MSSS/Texas A&M Univ.

On Earth, blue light from the Sun is scattered by air molecules and spreads around the sky to create a blue canopy. Mars has less the 1% of Earth’s atmosphere, so we only notice the blue when looking through the greatest thickness of the Martian air (and dust) around the time of sunset and sunrise.


Sunset on Mars photographed by the Opportunity Rover released earlier this year

The video above of the setting Sun was made using stills taken by Opportunity, NASA’s “other” rover that’s been trekking across the Martian landscape for more than 10 years now. You can see a bit of pink in the Sun just before it sets as in the Curiosity photos, but there’s something else going on, too. Or not going on.

Sunrise of Lake Superior. Atmospheric refraction - bending of the Sun's light - flattens the disk into an oval shape. Credit: Lyle Anderson
Sunrise of Lake Superior. Atmospheric refraction – bending of the Sun’s light – flattens the disk into an oval shape. Credit: Lyle Anderson

When the Sun sets or rises on Earth, it’s squashed like a melon due to atmospheric refraction. Much thicker air adjacent to the horizon bends the Sun’s light upward, pushing the bottom of the solar disk into the top half which is less affected by refraction because it’s slightly higher. Once the Sun rises high enough, so we’re looking at it through less atmosphere, refraction diminishes and it becomes a circle again.

I’ve looked at both the Opportunity sunset and Curiosity sunset videos many times, and as far as I can tell, the Sun’s shape doesn’t change. At least it’s not noticeable to the casual eye. I bet you can guess why — the air is too thin to for refraction to make much of a difference.

Twilights linger longer on the Red Planet as well because dust lofted high into the stratosphere by storms continues to reflect the Sun’s light for two hours or more after sundown.

So you can see that sunset phenomena on Mars are different from ours because of the unique qualities of its atmosphere. I trust someone alive today will be the first human to see and photograph a Martian sunset. Hope I’m still around when that awesome pic pops up on Twitter.

Andromeda and Milky Way Might Collide Sooner Than We Think

Andromeda's halo is gargantuan. Extending millions of light years, if we could see in our night sky it would be 100 times the diameter of the Moon or 50 degrees across! Credit: NASA

The merger of the Milky Way and Andromeda galaxy won’t happen for another 4 billion years, but the recent discovery of a massive halo of hot gas around Andromeda may mean our galaxies are already touching. University of Notre Dame astrophysicist Nicholas Lehner led a team of scientists using the Hubble Space Telescope to identify an enormous halo of hot, ionized gas at least 2 million light years in diameter surrounding the galaxy.

The Andromeda Galaxy is the largest member of a ragtag collection of some 54 galaxies, including the Milky Way, called the Local Group. With a trillion stars — twice as many as the Milky Way — it shines 25% brighter and can easily be seen with the naked eye from suburban and rural skies.

Quasars are distant, brilliant sources of light, believed to occur when a massive black hole in the center of a galaxy feeds on gas and stars. As the black hole consumes the material, it emits intense radiation, which is then detected as a quasar. These photos, taken by Hubble, show them as brilliant "stars" in the cores of six different galaxies. Credit: NASA/ESA
Six examples of quasars photographed with the Hubble. Quasars are distant, brilliant sources of light, believed to occur when a massive black hole in the center of a galaxy feeds on gas and stars. As the black hole consumes the material, it emits intense radiation, which is then detected as a quasar. Lehner and team measured Andromeda’s halo by studying how its gas affected the light from 18 different quasars.  Credit: NASA/ESA

Think about this for a moment. If the halo extends at least a million light years in our direction, our two galaxies are MUCH closer to touching that previously thought. Granted, we’re only talking halo interactions at first, but the two may be mingling molecules even now if our galaxy is similarly cocooned.

Lehner describes halos as the “gaseous atmospheres of galaxies”.  Despite its enormous size, Andromeda’s nimbus is virtually invisible. To find and study the halo, the team sought out quasars, distant star-like objects that radiate tremendous amounts of energy as matter funnels into the supermassive black holes in their cores. The brightest quasar, 3C273 in Virgo, can be seen in a 6-inch telescope! Their brilliant, pinpoint nature make them perfect probes.

To detect Andromeda's halo, Lehner and team studied how the light of 18 quasars (five shown here) was absorbed by the galaxy's gas. Credit: NASA
To detect Andromeda’s halo, Lehner and team studied how the light of 18 quasars (five shown here) was absorbed by the galaxy’s gas. Credit: NASA

“As the light from the quasars travels toward Hubble, the halo’s gas will absorb some of that light and make the quasar appear a little darker in just a very small wavelength range,” said J. Christopher Howk , associate professor of physics at Notre Dame and co-investigator. “By measuring the dip in brightness, we can tell how much halo gas from M31 there is between us and that quasar.”

Astronomers have observed halos around 44 other galaxies but never one as massive as Andromeda where so many quasars are available to clearly define its extent. The previous 44 were all extremely distant galaxies, with only a single quasar or data point to determine halo size and structure.

Andromeda’s close and huge with lots of quasars peppering its periphery. The team drew from about five years’ worth of observations of archived Hubble data to find many of the 18 objects needed for a good sample.

This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth's night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. (Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger)
This illustration shows a stage in the predicted merger between our Milky Way galaxy and the neighboring Andromeda galaxy, as it will unfold over the next several billion years. In this image, representing Earth’s night sky in 3.75 billion years, Andromeda (left) fills the field of view and begins to distort the Milky Way with tidal pull. Credit: NASA; ESA; Z. Levay and R. van der Marel, STScI; T. Hallas; and A. Mellinger

The halo is estimated to contain half the mass of the stars in the Andromeda galaxy itself, in the form of a hot, diffuse gas. Simulations suggest that it formed at the same time as the rest of the galaxy. Although mostly composed of ionized hydrogen — naked protons and electrons —  Andromeda’s aura is also rich in heavier elements, probably supplied by supernovae. They erupt within the visible galaxy and violently blow good stuff like iron, silicon, oxygen and other familiar elements far into space. Over Andromeda’s lifetime, nearly half of all the heavy elements made by its stars have been expelled far beyond the galaxy’s 200,000-light-year-diameter stellar disk.

You might wonder if galactic halos might account for some or much of the still-mysterious dark matter. Probably not. While dark matter still makes up the bulk of the solid material in the universe, astronomers have been trying to account for the lack of visible matter in galaxies as well. Halos now seem a likely contributor.

The next clear night you look up to spy Andromeda, know this: It’s closer than you think!

For more on the topic, here are links to Lehner’s paper in the Astrophysical Journal and the Hubble release.