Volcanic Activity on Venus Could Explain Phosphine

Ever since the announcement last September that astronomers found evidence of phosphine in the clouds of Venus, the planet has been getting a lot of attention. It’s not surprising. Phosphine is a potential biosignature: On Earth, it is produced by microbial life. Might a similar biological process be taking place in the skies of our sister planet? It’s a tantalizing prospect, and is definitely worth examining closely, but it’s too early to be sure. Microbes aren’t the only way to get phosphine. A new paper published on July 12th in the Proceedings of the National Academy of Science suggests that volcanism might instead be to blame for the strange chemistry in the Venusian cloud tops.

Continue reading “Volcanic Activity on Venus Could Explain Phosphine”

Satellite Images Can Help Predict When Underwater Volcanos are About to Erupt

Predicting volcanic eruptions is notoriously tricky. In large part this is because volcanos are unique, each with their own quirks and personalities: the lessons learned from studying one volcano may not apply directly to another. Luckily, researchers are getting better at finding warning signs that they can apply broadly. Some of the most well-known are heightened seismic activity, rising temperatures, expanding magma pools, and the release of gases. New research using satellite imagery now offers a new warning sign for underwater volcanos: a change in the color of the ocean.

Continue reading “Satellite Images Can Help Predict When Underwater Volcanos are About to Erupt”

A Small Satellite With a Solar Sail Could Catch up With an Interstellar Object

When Oumuamua, the first interstellar object ever observed passing through the Solar System, was discovered in 2017, it exhibited some unexpected properties that left astronomers scratching their heads. Its elongated shape, lack of a coma, and the fact that it changed its trajectory were all surprising, leading to several competing theories about its origin: was it a hydrogen iceberg exhibiting outgassing, or maybe an extraterrestrial solar sail (sorry folks, not likely) on a deep-space journey? We may never know the answer, because Oumuamua was moving too fast, and was observed too late, to get a good look.

It may be too late for Oumuamua, but we could be ready for the next strange interstellar visitor if we wanted to. A spacecraft could be designed and built to catch such an object at a moment’s notice. The idea of an interstellar interceptor like this has been floated by various experts, and funding to study such a concept has even been granted through NASA’s Innovative Advanced Concepts (NIAC) program. But how exactly would such an interceptor work?

Continue reading “A Small Satellite With a Solar Sail Could Catch up With an Interstellar Object”

LightSail 2 Has Now Been in Space for 2 Years, and Should Last Even Longer Before Re-Entering the Atmosphere

Photo of LightSail 2's sail deployment. Credit: The Planetary Society
Photo of LightSail 2's sail deployment. Credit: The Planetary Society

The Planetary Society’s crowdfunded solar-sailing CubeSat, LightSail 2, launched on June 25th 2019, and two years later the mission is still going strong. A pioneering technology demonstration of solar sail capability, LightSail 2 uses the gentle push of photons from the Sun to maneuver and adjust its orbital trajectory. Within months of its launch, LightSail 2 had already been declared a success, breaking new ground and expanding the possibilities for future spacecraft propulsion systems. Since then, it’s gone on to test the limits of solar sailing in an ongoing extended mission.

Continue reading “LightSail 2 Has Now Been in Space for 2 Years, and Should Last Even Longer Before Re-Entering the Atmosphere”

Asteroid 16 Psyche Might Not be a Solid Chunk of Metal After All, but Another Rubble Pile

Asteroid 16 Psyche, often sensationally dubbed the 10,000 quadrillion dollar asteroid due to its composition of valuable metals, may not be entirely what it seems.  A new paper out of the University of Arizona suggests that the asteroid is possibly more porous, and less metallic, than previous studies indicated. It still certainly has a mostly metallic structure, but its composition is more complex – and that’s good news. Given the impracticality of space mining (in the near future anyway) 16 Psyche’s real value is scientific: planetary scientists think it is probably the exposed core of a protoplanet from the early days of the Solar System. Studying such an object up close would be enormously useful for understanding planet formation, and this paper is the latest attempt to understand its structure.

Continue reading “Asteroid 16 Psyche Might Not be a Solid Chunk of Metal After All, but Another Rubble Pile”

Next up, Juno has Ganymede in its Sights

NASA’s Juno mission is set for a close encounter with the Solar System’s largest moon, Ganymede, on Monday. This will be the first flyby of the icy world since the Galileo and Cassini spacecraft jointly observed the moon in 2000. New Horizons also got a quick snap of Ganymede as it slingshotted around Jupiter on its way out to Pluto in 2007, but from a distance of 3.5 million kilometers away. Juno’s pass on Monday will get much closer, approaching within 1038 kilometers of the surface.

Continue reading “Next up, Juno has Ganymede in its Sights”

Hubble Has Tracked Down the Source of 5 Different Fast Radio Bursts

In a new survey, astronomers using the Hubble Space Telescope have managed to pinpoint the location of several Fast Radio Bursts (FRBs). FRBs are powerful jets of energy that, until recently, had mysterious, unknown origins. The research team, which includes University of California Santa Cruz’ Alexandra Manning and Sunil Simha, as well as Northwestern University’s Wen-fai Fong, performed a survey of eight FRBs, from which they were able to determine that five of them originated from a spiral arm in their host galaxies.

Continue reading “Hubble Has Tracked Down the Source of 5 Different Fast Radio Bursts”

Larger Rocky Planets Might be Rare Because They Shrunk

Researchers at the Flatiron Institute’s Center for Computational Astrophysics published a paper last week that just might explain a mysterious gap in planet sizes beyond our solar system. Planets between 1.5 and 2 times Earth’s radius are strikingly rare. This new research suggests that the reason might be because planets slightly larger than this, called mini-Neptunes, lose their atmospheres over time, shrinking to become ‘super-Earths’ only slightly larger than our home planet. These changing planets only briefly have a radius the right size to fill the gap, quickly shrinking beyond it. The implication for planetary science is exciting, as it affirms that planets are not static objects, but evolving and dynamic worlds.

Continue reading “Larger Rocky Planets Might be Rare Because They Shrunk”

What’s the Best Way to Water Plants in Space?

Humans have maintained a continuous presence in space on the International Space Station (ISS) for more than 20 years now. It is our longest-running and most comprehensive experiment in long-duration spaceflight. But the ISS is continually supplied with consumables – food, water, and oxygen – so astronauts are largely reliant on Earth. If Humanity is ever going to live and work in space long term, we’re going to have to learn to be more self-reliant – and that means growing food in space.

Continue reading “What’s the Best Way to Water Plants in Space?”

Volcanoes on Mars Might Still be Active

Back in March, NASA’s InSight lander detected two large quakes from a geologically active region of Mars called the Cerberus Fossae. Now, using imagery from the Mars Reconnaissance Orbiter, which circles the red planet at an altitude of about 300km, researchers have discovered that the Cerberus Fossae region holds the most recent evidence of volcanic activity ever seen on Mars.

Continue reading “Volcanoes on Mars Might Still be Active”