Book Review: New Moon Rising

In an easy to read style, the book, for the most part, follows a chronological list of relevant events from about the year 2000 to the present. The main ones are Goldin’s last days, finding his replacement, the appointment of Sean O’Keefe, the loss of Columbia and the fabrication of NASA’s new vision which President Bush provided in early 2004. Names predominate throughout. Large quantities of people, projects, programs, companies and foundations appear in what sometimes seems to be a never ending parade. As quickly as these come, they go again. So, it is difficult to find a common thread or reason for their inclusion. Perhaps these names and/or offices are essential contributors, but this is not apparent. Nevertheless, the discussed events all directly contribute to the making of NASA’s new vision.

During Goldin’s time as administrator, NASA had many mandates and insufficient resources. The Challenger accident left the space shuttle program with a blemish and an even greater launch cost than originally estimated. The orbiting space station went through innumerable configurations and designs in an effort to please as many potential users as possible. Even NASA’s various field offices seemed more focussed on their own agendas than on a ‘corporate’ vision. Sean O’Keefe, Goldin’s replacement, had recent experience in financial auditing including a recent review of NASA’s finances. As the new administrator, his main assignment was to reassert fiscal realism. But to do this he needed priorities. And to set priorities he needed an achievable and specific vision. Thus, as much as O’Keefe replaced Goldin, so did O’Keefe need a vision to replace and rebuild from the current situation.

The premise of this book is that the creation of NASA’s vision was by the spontaneous and surreptitious meetings of a cadre of very junior hill staffers during coffee break and lunch. This seems difficult to believe, but the authors weave a very reasonable and continuous thread from this ‘rump’ group as they were called, through to more senior groups, senators and agencies and then up to the president. Again, names are liberally included, so this thread may be authentic, but still it seems a bit far fetched. Perhaps the most intriguing element is that NASA was apparently not part of this process until very late in the formulation. So in one sense it does seem a bit too fanciful to have junior staffers making a vision for an agency with an annual budget of $16 billion (can you imagine this happening for foreign policy?!). But, as they had nothing to lose and probably no alternate agendas, there is a ring of truth to this premise.

Perhaps equally fanciful is the claim that this new vision will get humans operating in space. Having a vision and a supporting budget is critical. Equally critical is the support of the elected politicians, who regularly change, as well as the support of other nations and their respective space agencies. But all of these will be needed for the duration. The authors rightly point out that this will be challenging. They even provide an excellent perspective on what to expect should either of this year’s presidential candidates win. Sadly, neither candidate seems solidly behind NASA and perhaps with this, the authors unknowingly provide more evidence contrary to their expectations than for it.

In their writing, the authors show they are non-partisan but very supportive of NASA’s new space vision. They acknowledge that senior NASA leadership provided access to information and verified personal communications, but they are also quick to point out that the contents is their own. The included DVD has memorable video footage of President Bush’s introduction of this vision, as well as Sean O’Keefe’s comments. This all lends authenticity to the contents and claim.

This book is good but it has its weaknesses. One item lacking is an index. Retracing people and events is almost impossible. Further, though the names and events may be very applicable today (the fall of the year 2004), expect them to become quickly very dated. With retirements and re-appointments, the parade of people just changes too quickly to make this book a useful reference in the long term. Also, perhaps the weakest element of the book is the lack of justification for spending nearly $100 billion for a program to send people to the Moon, Mars and beyond. Though more effort could have remedied these, the book is still a good read.

As the authors say in New Moon Rising, NASA needed and obtained a new space vision to direct its efforts. The authors provide a detailed and broad overview of the very large supporting cast that contributed to the vision that was initiated with President Bush’s speech early in the year 2004. Now, in the authors viewpoint, NASA and its new administrator, Sean O’Keefe, have what they need to ensure this vision becomes reality.

To read more reviews, or order the book online, visit

Review by Mark Mortimer

Book Review: Leaving Earth

The Soviet Union began by vouching for human habitation once they had lost the race to the moon. Patsayev, Dobrovolsky and Volkov occupied the first Salyut which was the first manned orbital space station. During their three weeks in this small metal tube like craft they kept busy with adapting to a climate and facility created by ground-based designers who had no real appreciation of weightlessness. These cosmonauts succeeded in performing nonetheless with one highlight being the growth of many plants from a variety of seeds. By sticking to a rigid and very busy schedule of work, exercise and maintenance, they added significant insight into living in space for long durations. Sadly though this didn’t come freely for the Soviet Union as the cosmonauts tragically died while descending in their re-entry capsule.

Skylab was the USA’s response to Salyut. This behemoth, launched via the last Saturn V rocket system, provided over 12700 cubic feet of living space. This was a veritable mansion as compared to the Soviet Union’s Salyut. Here Conrad, Kerwin and Weitz completed a four week tour that was as much for repair and reconstruction as it was for scientific experiments. In a ‘we can fix anything’ mentality, they unstuck a solar panel, unpacked equipment and set up experiments. Surprisingly, they experienced no space sickness, just like the first Soviets, though this turned out
to be very rare.

In Salyut 4 Grechko and Gubarev, had brought seeds, amoebas, tadpoles, fish and flies to share their living quarters in Salyut 4. After 30 days of scientific experiments, observation and maintenance activity, they successfully returned to Earth. This was the Soviet Union’s first success in manned station return. With Salyut 6 the Soviet Union launched over eighteen different manned missions during its almost five years of operation. Residents stayed for over six months with a complement, at times, of up to four people. The Salyut 7 and Mir missions built upon the Soviet Union’s successes. Space flight durations were extended. Equipment was better designed, while experiments provided more insight on how the human body reacts to extended times in space. The cosmonauts learned to focus and control their emotions to stay mentally and emotionally fit in such an unnatural situation. They could repair aged or broken equipment, recover from unexpected failures and add significant structural components. This time saw amazing progress but the end of the Soviet Union also spelt the end for Salyut’s and Mir’s roles of being stars for communism.

Nevertheless, political expediency still is keeping the space program alive. Russia deorbited Mir to save money. They then joined with the USA and other nations to pursue construction of the International Space Station (ISS). Though Russia was able to impart some of their hard earned knowledge the USA considered the contribution to be more a form of economic relief for the newly recreated state. From this it appears the political climates have almost changed places as the Russian space program, by necessity, is relying on capitalism for its very survival while the NASA bureaucracy appears to be more interested in keeping itself alive than in advancing the space program. Yet the ISS is in space and is contributing to our knowledge.

Though this book contains many of the technical issues of the designs of space stations as well as the sordid details of politics, its greatest provision is the human experiences that so richly embellish the story. You read of cosmonauts that try farming plants throughout the interior of their craft in efforts to yield a worthwhile harvest. There is a female fighter pilot/cosmonaut that ended up wearing a dress and being a hostess in space. Innumerable misses of docking craft demonstrate the riskiness of the whole affair. As well, the complete dependency on temperamental machinery constantly kept stark terror a scant distance away. Most of all though, the reader can see the triumph of human ingenuity and community where coming together is not just a convenience but a necessity.

There are many people who believe that Mars is the next step for the human race. Robert Zimmerman shares in the belief and in his book Leaving Earth he shows how the previous thirty years have given humankind an incredible wealth of knowledge on how to do this. Within it are many excellent descriptions of good designs and bad designs, heroic actions to save a mission and errors in judgement that nearly doom them. Yet the message comes through again and again, if we want to go to Mars we have shown we have the ability, we only need the will.

To read more reviews, or order the book online, visit

Review by Mark Mortimer

Book Review: Sun Observer’s Guide

Our sun produces vast amounts of energy through nuclear reactions. Due to this energy and the sun’s huge mass, the sun consists mostly of sub atomic particles and ionized atoms especially hydrogen and helium. These rocket and careen within the sun and then via convection and radiation they work their way out through the surface, the photosphere, and onward throughout the solar system. The photosphere, tenuous as it is, can be seen to resemble porridge with a fairly homogeneous mix of small light and dark patches. Occasionally, a large dark spot occurs. Seemingly harmless, this spot is quite often a burst of energy and matter that sends an energetic stream of particles and radiation out from the sun. Perhaps harmless in appearance these spots can disrupt radio traffic, fail electrical power grids and knock out satellites. But on the good side, these spots are the main subjects for sun observers.

Using sun spots, observers can assign a latitude and longitude coordinate system to the sun. They can define the sun’s rotation rate and its ‘mood’. A sullen sun may have only one or even no sunspots on its surface. At other times, the playful sun could have hundreds of sunspots. This activity cycles through its minimum and maximum over an eleven year period. However the sun can quiet down for a longer time. Between 1645 and 1715 there was almost no sun spot activity. We refer to this time as a little ice age here on Earth due to the much cooler temperatures experienced. Of course, the opposite can happen. Unusually high sun spot activity occurred in the years 1000 to 1250 and a warmer climate allowed Vikings to settle in Greenland. So, not only are sun spots the main characteristic of our sun, they also have a direct influence on the earth’s climate. There can’t be a much better reason for observers to continue their studies!

One of the main benefits of observing the sun is that minimal equipment is required. Some observations are achievable with binoculars and a few sheets of paper. A small refractor telescope is better than binoculars, but due to the sun’s energy, small is actually better than large. And using paper with appropriate grids and scales on it aids in locating and sizing sun spots that do appear. Then, using the techniques described in this book, a viewer can characterize and record their observations in a manner that is useful for their own benefit and in a manner that would be advantageous to professional bodies, if the observer wanted to share their work. This isn’t that far fetched, as the author herself contributes as an amateur and then works with an organization that makes use of amateur observations.

Aside from sun spots, the other great viewing attraction of the sun is its eclipse. Because of its rarity and its spectacular sight, the eclipse draws people from everywhere in the world. If you are fortunate enough to be on a path of totality, you will see the sun go through a number of distinct phases. It starts with an annular eclipse, where the moon moves to block the sun’s light. When the moon almost exactly covers the sun only some of the photosphere is visible at the moon’s edges and the moon appears to have a ring of fire about its circumference. Should a valley on the moon allow a ray of light to sparkle and flash in the sun’s normal white colour with the beads somewhat like a diamond ring. At totality the photosphere is completely blocked and the ghostly corona shimmers and shines in vibrant ribbons floating around the ring of the moon. Then these phases repeat themselves in reverse order, as the moon continues in its orbit past the sun. The solar eclipse is truly worth travelling to see.

To learn a bit about the sun and of the pleasures in viewing it then Pam Spence’s book, Sun Observer’s Guide, is a handy reference. Sometimes it can be repetitive in its instructions and there is very little on why the sun does what it does. However, there is more than sufficient detail on how to look, what to look for and what the value is of the observations. The unaided and unknowing eye may consider the sun a rock steady source of light and heat, but an educated viewer, with the help of this book, will know better.

To read more reviews, or order the book online, visit

Review by Mark Mortimer

Book Review: The Depths of Space; The Story of the Pioneer Planetary Probes

The Pioneer space probes, brought to fruition by the staff of NASA’s Ames facility, were a series of eight very similar craft. Their main claims to scientific fame included a litany of firsts in space travel and exploration. Though these probes began in the same era as the ‘all encompassing’ manned lunar flights, they happily and necessarily served a different purpose. Happily as in people realized that manned space flight is not the best tool for exploration; there were cheaper mechanical probes. Necessarily as in Ames had just been absorbed into NASA and needed to create a niche for itself or be in danger of disappearing altogether. Thus began the Pioneer odyssey.

Prior to absorption, Ames had been an effective and very responsive academic styled institute. Its staff solved problems very well but expected the problems to be handed to them on a silver platter. At that time, under NACA, they were considered some of the best theoreticians in their field. On becoming a part of NASA, Ames couldn’t sit back when proactive facilities like JPL were overwhelming the spot light. Charles Hall, an Ames staffer, took on the challenge of altering the mind set at Ames as well as the altering the beliefs of the bureaucrats at NASA. With convincing financial and technical arguments, he demonstrated that Ames could effectively manage the design, assembly, test, and operation of a space probe, even if it was to be the first to assess conditions outside of the Earth’s protective shield. Hall turned out to be the right person at the right place and at the right time for his arguments succeeded and Ames began a new direction as space craft designers and builders.

Much of the success of the Pioneer program was directly tied to Hall. Long before ‘faster, better, cheaper’ became the mantra in vogue, Hall lived and breathed this axiom. Technically he did it in two ways. The first way was to have a clearly defined purpose for each probe and each sub-system within the probe. He then fixated on this purpose, and only monumental persuasion convinced him to accept any modifications or redesigns. In consequence, the typical cost run ups and time over runs were all but absent. The second way Hall accomplished this was to stay true to the KISS (keep it simple stupid) principle. Where at all possible, only proven technology and components were used. Simple solutions, such as stabilizing a satellite with spinning, won out over complex ones that used thrusters in each of three axes. Hall’s other forte aside from program management was his political skill, especially with principle investigators. Whether refereeing the battles for the satellites’ download bandwidth or brokering for ever scarce time on the Deep Space Network (DNS), Hall had a knack of finding an amenable solution that kept his program on time and on target. As much as these were and are the better styles of management, when all was said and done, it was the final product and its success that vindicated Hall’s style and direction.

Pioneer probes 6 through 9 were launched between the years 1966 and 1969. They had a design minimum lifetime of six months. However, as 1970 rolled around, Hall was using all these in operating the first space based weather monitoring network. Pioneer 9 still operated up to 1983! Pioneer 10 and 11 were, of course, the well known path finders; the first to ever reach out beyond Mars. Their mission design was to reach Jupiter and assess its surroundings. Yet, both these probes were allowed and able to travel on and were functioning well past Pluto. Only recently has their signal strength gotten so low that the DNS is unable to detect it against background. This is testament enough for the abilities of Hall and everyone else who worked on the Pioneer missions. However, to complete the picture, don’t forget Pioneers 12 and 13. They were directed inwards, to Venus where they provided some of the best observations and measurements of Venus to date. All these Pioneer probes had Hall’s guiding light and all had remarkably successful missions.

Mark Wolverton’s book The Depths of Space provides a very readable and pleasant historical look at some of the significant issues surrounding the Pioneer space probes. Though perhaps by the end a bit repetitious in its accolades, it contains excellent views into some of the significant trials, tribulations and credos for humankind’s first spacecraft to go boldly where none had gone before. Yes, there may have been sketches of naked humans placed upon them but these probes were much more than mere messages in a bottle.

Read more reviews and buy the book online from

Review by Mark Mortimer

Book Review: The Fabric of the Cosmos

And to add life you need to know what it is all about. Consider that most people believe humans are not at the centre of everything. So if we’re not at the centre, then where exactly are we? Well, centre is pretty much a matter of perspective, and when considering the cosmos, there is a lot of perspective. Newton had things nicely arranged by putting equations and relationships onto macroscopic objects. He had forces and masses and orbits, but he was a little wishy washy on what held it all together. Were the visible constituents all that there was, or was there more? The answer, we know, is, of course, there is more. There are atoms, photons and quarks. Even more tantalizing are fields. Magnetic or electric fields extend from a source to a destination without needing intermediary material. This then is the ticket. This defines the constituents of our surroundings, our existence, our life.

But is this as deep as things get, or can we get deeper? As we delve into smaller and smaller realms, some of our traditional observations and laws get broken. Communication is not supposed to go faster than the speed of light. Yet there is nonlocality, the instantaneous transfer of information, that has been observed when identifying the spin of electrons. And speaking of electrons, those sneaky little particles, we can’t even be sure of where they are or where they are going. Measuring one of their parameters clouds the observation of the other. Not fair! And further, unless we do measure them, the electron may just be anywhere. A probability function is our best guess on where it may be. We see delving into the ‘small’ shows a tricky non-classical view, but things get even hairier.

Let’s look at the bigger picture, our universe. Measurements indicate it’s growing in size and its growth is accelerating. Perhaps surprisingly, there is an ambient temperature of about 2.7 degrees Kelvin. But temperature is an indication of energy. What emits or carries this energy and where did it come from? We’re pretty sure it came from the Big Bang, but we’re not sure what this event was. Nor are we positively sure how we got from that time to this time. Various inflationary steps may have occurred perhaps all of which were driven by some desire to increase entropy. And then, what about time. Is time an inviolate unidirectional dimension? Worm holes may provide a chance to travel in time, but we have yet to see anyone from the future popping by. When looking at the expansion of our view, it is just as freaky as the shrunken version. No wonder theoretical physicists seem to always have a perplexed look.

And how does this all come together? Well, aside from the fact that it is the existence in which we find ourselves, there is nothing definite. But imagine a superstructure of strings, small and large, open and closed. These perplexing little entities can vibrate with special harmonics and purportedly give rise to what we call an electron or a graviton or some field effect. These strings may fill the space that Newton saw as black nothingness but still we can’t prove this as we can’t yet see any. They may even be the reason why some people consider the universe and ourselves to be a holographic image being played out from a lower dimensional frame. Now that’s neat stuff for a cocktail party.

Well, this book on the cosmos will guide the reader through the popular and likeliest hypothesis in theoretical physics today. Illustrative examples and experiments provide wonderful substance to esoteric princeps. Picture Bart Simpson cruising on a skate board to the Andromeda galaxy to pick up some fish and chips. Or there are Mulder and Scully of X-Files notoriety who get mysterious packages mailed to them from aliens. Classical mechanics is intertwined with string theory and teleportation. The gist is there but the breadth of this book, like the cosmos, can be daunting.

Now there could still be a problem if you read this book and then attend a party. The problem is that others in attendance may be equally or better versed. And sadly, many of the enclosed arguments surrounding string theory rest on the laurels of mathematical gurus that say the ‘new’ equations solve some trite detail. Though there are many references, this hearsay doesn’t really support the conjectures. And face it, any party gets pretty stale very quick when the conversation becomes a ‘he said’, ‘she said’, affair.

So anyway, you’ve read Brian Greene’s book on The Fabric of the Cosmos and you’re now ready for a cocktail party or two. You can wow them with your grasp of black holes and entropic progression. You might even get some mileage from telling everyone that we actually live in a universe of ten or so dimensions and that we just can’t quite yet detect the other 6 or 7 or whichever. And who can say you’re wrong? Even Brian admits that there is a lot of conjecture and precious little evidence in the beauty of our cosmos. So go ahead, read about the cosmos and start on the road to being a bona fide theoretical physicist.

Read more reviews on

Review by Mark Mortimer.

Book Review: Gorgon

Peter Ward cut his teeth, so to speak, on a more recent mass extinction. This event was the Cretaceous-Tertiary or K/T mass extinction about 65 million years ago that saw the end of the dinosaurs and many of their co-habitants. Fortunately for people, it also paved the way for the dominance of mammals. The quest that drove Peter and other paleontologists was to find the reason for the mass extinction. After extensive investigation of the K/T boundary, the cause was ruled not to be a long, gradual climate change but a brief flash due to an asteroid hitting at Chicxulub in the Yucatan peninsula of Mexico. Peter’s own findings supported the final conclusion but seeing as it was a conclusion, Peter was left without a future target for his personal challenge.

The end of the Permian period was similar to the end of the Cretaceous period as each ended with a mass extinction. However, the Permian period was a more complete extinction and, as it occurred hundreds of millions of years beforehand, there was a lot less material to substantiate either a cause or a process. Peter fortuitously began studying this event. Over the ensuing twenty years, he experienced both political extremes in the pre and post apartheid and environmental extremes as he traversed the back country called the Karoo. He discovered much about the mass extinction and much about himself.

The lands of the Karoo do not give up their secrets easily. Though effectively a desert region, its temperature ranges from below freezing to well above 40 Celsius. Sunstroke and frostbite were equally possible. Ticks were incessant and could in one bite lead to a painful and fateful end. Puff adders and Cape cobras abounded. Clean water didn’t. Restaurants and hotels were few and far between and of limited quality. In spite of the hardships, or perhaps because of them, many every day visions took on a greater grandeur. Night skis were a crystal clear panoply of stars, galaxies and light shows. Rivers had recuperative powers better than any pharmaceutical pill. And, of course, the sighting of a fossil made the rigour of many a hard day melt away. The Karoo had the evidence needed to help explain the Permian boundary extinction but it did so grudgingly.

Being a paleontologists, as is Peter, gives perhaps a somewhat unique perspective of today’s events on Earth. Some claim that the Earth at this moment is experiencing another mass extinction. However, this time it is not due to celestial strikes but through the actions of a singular species, humans. Humanity is causing the loss of species at a rate ten times faster than at any time since the last mass extinction. In addition, with its alteration to the Earth’s environment, especially the atmosphere, many of the indicators for the start of a mass extinction are again present. Further, if a large extinction occurs, then with the human caused reduction in biodiversity, the Earth may again need tens of millions of years to achieve a full set of complex life forms. Peter raises such perspectives and in so doing easily justifies the time and effort spent examining an event hundreds of millions of years old.

This backward look in time is equally exciting for space enthusiasts. NASA itself is funding significant investigations into the Earth’s mass extinctions and the beginnings of life. The definition of life and its constituent matters may seem complete but seeing new life forms at undersea volcanoes or kilometres deep in granite lends credence to the belief that life can exist elsewhere than Earth. Further, the study of mass extinctions can lead to the definition of the processes of evolution as well as ecosystem dependencies. From this, conjecture can be raised about the effects of the loss of species and phyla, as well as the effects of another asteroid striking Earth. Such scenarios easily give NASA greater support to develop lunar bases and space travel.

After reading this book, you will discard any romantic notions you may have had about being a fossil hunter. Peter clearly describes days of sweat, years of poor pay and few occasions of reward. His personal vindications allow a reader to feel the warmth of comradery, the joys of mystery meat on pizza and the satisfaction of contributing to scientific knowledge. As much as this book reinforces a career choice other than a paleontologist, I’m glad there are people like Peter who do this work and are able to write a book for a non-practitioner to enjoy.

Yet, though I’m not a paleontologist, I would have liked a clearer description of the events and surroundings being investigated. There is a flourish that waxes about the vast expanse of life before the Permian mass extinction and the lack thereafter, but there is little detail. Also, reference is made to activities and researchers elsewhere, but these seem more of an add on than part of the narrative. Peter includes more of his feelings than details of his work, which may please or discourage the reader.

The Gorgonopsian was a predator from the Permian period. It became extinct along with about 95 percent of its fellow inhabitants on Earth at the end of this period. Peter Ward, in his book Gorgon, describes his personal challenges and successes in prying the secrets of fossils from the back country of South Africa. In reading this book, you can easily end up wondering about the huge expanse of lives and events that have gone before us, wondering about current and past politics or just wondering about what drives people to do the things they do.

You can also read a review of Ward’s previous book, The Life and Death of Planet Earth here on Universe Today.

Read more reviews, or buy a copy online from

Review by Mark Mortimer

Book Review: Comm Check

The seven-member crew of space shuttle Columbia was a picture perfect cross section of humanity. It included a range of ages, both sexes, a number of ethnicities and several nationalities. Each person was a very talented individual who was excelling in their chosen vocation. Almost all were living out a childhood fantasy of travelling in space. However, their goal was not that of personal glorification but rather of being a participant of the much larger space exploration effort undertaken by NASA, the United States and other world governments. These astronauts realized that they were a beacon for young and old alike; a symbol of what cooperation and skill can achieve. Their hopes, as well as the hopes of their families who were waiting at the landing site, were dealt a serious blow when Columbia didn’t return.

Of course, the shuttle relies on more than just the seven astronauts. Its related workforce totalled about 17,500 people of whom over 90% were contractors. These people were responsible for processing the shuttle before each flight and ensuring that the flight went smoothly. Here is where the main cause of Columbia’s failure arose. The people who were making these decisions were becoming over confident with every successful flight. In particular they were neglecting the fact that the shuttles were still designated as experimental. The mindset appeared to change from proving that the shuttle was ready to fly to one of proving that there was an anomaly that would make the shuttle unflyable. For example standing requirements for meeting readiness to flight were being challenged due to semantics rather than considering the safety implications. Expediency was replacing safety as the mantra of the day and this was a dark foreboding for the experimental shuttle.

Though the CAIB and this book share many of the same concerns about the accident, the authors raise a more fundamental one regarding NASA’s very existence. This concern centres on the political climate that now engages NASA. In the beginning, NASA was a political instrument with the very singular task of landing people on the moon and safely returning them to earth before the year 1970. Yes, in their time they had trials and disasters, but they were focussed and, more importantly, they had the support of the politicians words and especially the budget allocations. NASA succeeded in their task and deserved all the accolades given them.

Today NASA is drastically different. It has no singular goal and it seems to drift from one purpose to the next, as depending on the whim of the party in power. Further, most politicians happily vouch their support for space exploration yet almost yearly force a decrease in NASA’s budget. On top of this, NASA has gotten itself into a program bind. The shuttle’s reason for existence is to build the International Space Station (ISS). Yet the goal of the station itself appears to be mostly to provide rationale for the shuttle’s existence. Neither have strong justification for existence on their own nor do either have an apparent succession plan other than complete replacement. Through an executive order the shuttle is forbidden from launching commercial satellites and when flown for experiments, as Columbia was, there is precious little justification for the $500 million launch cost. NASA is unfocused and unsupported and needs to pull together to define a goal which would clearly places a value on programs, schedules and safety.

Cabbage and Harwood have written an engaging text that strongly focuses on the people directly involved with Columbia’s final flight. Part of it is like a testimonial to the crew and clearly we see the sacrifice made by the crew. I like the chronological narration particular in the rendition of what happened while Columbia was flying in orbit and the ground crew thought there was a problem but couldn’t prove it.

However though there was a lot of personal information sometimes it was excessive. The text contains the complete academic background and most of the career progression of the main individuals. Further, this information appears to be copied straight from a dossier rather than determined from personal interviews. I would have preferred more insight into the person’s feelings than their work accomplishments.

In Comm Check… The Final Flight of Shuttle Columbia, Michael Cabbage and William Harwood co-author an easy to read book that portrays the main people involved with the Columbia accident and the events surrounding it. Though there is no vilification of any person, and none appears to be due, there is a sense that something is not quite right at NASA. Reading this book will remind you of the sorrows of the second loss of a shuttle and will also give you a feeling of how close the United States is to cancelling any future human space flight. This would be a significant decision and reading this book may help you decide where you want to vote on this issue.

Read more reviews, and find similar books from

Review by Mark Mortimer

Book Review: Strange Matters

The frontiers of space and time are where the physicists and cosmologist are positioned in their search for an understanding of our surroundings. These theoreticians and experimenters are looking for smaller and smaller particles in our space and at the same time are considering the possibility of more than one universe. For them, time may or may not have begun with the start of the universe. It is a relative dimension, and it may even consist of more than one dimension. As equipment gets more advanced, whether stronger atom smashers or more powerful telescopes, these experts obtain more and more clues about existence and often more and more questions.

In our surroundings stranger and stranger ideas are contemplated. There may be planets without central stars. Our universe may start growing with hyperinflation, slow down growth and then speed up again. Patterns of galaxies look like they grow on bubbles. While great attractors have matter streaming into them. Dark matter and negative energy may be more important than visible matter and known energy in keeping our universe together. The universe could be expanding and continue to do so forever, in steady state, or it could be contracting where a big crunch brings the universe back to that which existed before the big bang. There may be other universes alongside or intertwined with our own, or there may be multiple copies of our universe. Theoreticians are looking at their equations and current observations and trying to make reason of it all. Experimenters, of course, would cherish the idea of travelling about the galaxies so as to equally provide for an understanding. However, for now, being stuck on a planet forces them to make the most of whatever is at hand.

Theoreticians rely, for the most part, on mathematics. Math is a standardized means of expressing relationships between entities. Because of its formality, a mathematical equation will often provide more than just the one answer needed and theoreticians will pronounce new elements or conditions based on these alternate answers. Though these can appear, at first, to be nonsensical, experimenters might then establish proof of the validity of these answers. This method of mathematical ‘prediscovery’ has lead to such exotic concepts as strange matter, dark energy, negative pressure and fractional electric charges. And the theoreticians and experimenters are an essential combination in advancing our understanding.

However, even with the steady advances being made, there still remains their greatest challenge, to combine gravitational force with electromagnetism. Physicists are looking hard for this unifying theory and, though many pronouncements are made, there is still no proof for any particular one. Super symmetry or string theory is a strong candidate. By vibrating at different frequencies or notes, a string could mimic any elementary particle. Recent theories have overcome earlier anomalies in the conservation laws and actually provide tens to hundreds of possibilities. These are now considered to be equivalent candidates as each can fold into the other due to the concept of topology. Experimenters, however, will be challenged as the largest of these strings are believed to be on the order of 10-31 cm. Needless to say they aren’t able to do this, at least yet.

And this is one of the curiosities that Tom raises. Is the universe set in a specific way, for a specific reason, or is it the mathematics that defines the state of the universe? This is termed by the cosmologists as the anthropic principal. That is, people are needed to define that in which they exist so perhaps, without people, this universe wouldn’t exist or at least it wouldn’t the way we know it. Further, mathematics is a human construct. So how is it continually able to predict knowledge? And how is it we can say something exists even though we can’t detect it with any of our five senses? Still, with all the good that has come from curiosity it is fortuitous that people are curious.

Tom’s book is a wonderful tour de force of current thinking in physics and cosmology. It discusses much of the progress in scientific ideas, from early principles such as conservation of energy through to the wave/particle concept of light and beyond. Often Tom includes the results of personal interviews and this adds solid credence to the work. Also, though mathematics is often raised, the book has no equations. Albeit, a good understanding and interest of physics and physical principles will allow you to get the most out of this tour.

Though I do appreciate the ability of a journalist to capture the essence of a story, there are times this book reads like a collection of headlines rather than a continuous connected prose. The subject is the same throughout, i.e. physics and cosmology, but it is difficult to grasp what, if any, overall point is being made. The book would greatly benefit with the presentation of a reason for research and analysis in this area.

The physicists and cosmologists are indeed finding matter to be strange. Tom Siegfried in his book Strange Matters, Undiscovered Ideas at the Frontiers of Space and Time will bring the reader up to speed on who is doing what to provide a better understanding of our cosmos. Tom’s journalistic skills allow very complex topics to be easily read and understood by the uninitiated. Read this book and you will realize that, though perhaps strange, the ideas being contemplated at the forefront of space and time show humans to be a gifted species with great potential.

Read more reviews and descriptions from

Review by Mark Mortimer

Book Review: Einstein’s Cosmos

Perhaps surprisingly Einstein had a less than spectacular youth. He appeared to be more interested in reading books than developing social skills. He also had his own value system that gave greater weight to substance than imagery. From this he completed his undergraduate work with no money, no support for further education and few friends to start him on a career. Luckily one of them did find him a posting as a government patent officer. As he excelled at analyzing propositions, the work suited him. Of greater benefit was the opportunity he had to freely think about many of the questions that had been perplexing him since his early years. Through discussions with new colleagues and fortuitous circumstances in one year, 1905, he wrote his theories on special relativity, the interchangeability of matter and energy and the quantization of light. With these Einstein finally received support from the scientific community together with a doctorate and a teaching position at a university.

In as much as these theories were ground breaking postulations of their time, Einstein didn’t rest on his laurels. Much of his preceding work had been on the contemplation of light and the electromagnetic effect. Einstein’s conjectures about light were for the most part based in the nether regions of space where there was no effect from gravity. His general theory on relativity brought gravity into perspective by describing it as the bending of space and time. As Einstein was now a full member of the scientific community he instantly got support and tribulations from his colleagues. Though this was and still is the accepted method for evaluating new theories it seemed quite vicious and even somewhat personal. Nevertheless his theory prevailed with much support from a field he was not particularly good at, mathematics. In reviewing Einstein’s work mathematicians corroborated his theories and perhaps more importantly expanded them to encompass other known yet unexplained phenomena.

It was at about this time that Einstein’s fame blossomed. He went on world tours, was greeted by royalty and had the adulation usually reserved for film stars. He even saw his face depicted in stained glass at a church to which he mused, “a jew as a protestant saint?”. Aside from these existential considerations, Einstein was facing more suitable cosmological challenges. For example, if gravity is an attractive force shouldn’t the universe be contracting, eventually leading to a singularity? Einstein with the scientific community tackled this and others. Schwarzschild’s solution to Einstein’s equations led to event horizons and black holes. Mandl brought forward the idea of testing gravity by looking for the lensing of light caused by the mass of stars. These and others put Einstein’s theories to the test and continually they were found up to the task. He was due his fame.

Still Einstein continued. The jewel in the crown so to speak was the unifying theory. That is, a field theory that unified his theory of gravity with Maxwell’s theory of electromagnetism. Unity would bring together the farthest reaches of the cosmos with the smallest concepts of particles in a sensible temporal frame. Much of the last thirty years of Einstein’s life was spent looking for this theory. Mathematics shone as the tool of choice as only it could successfully represent the relations of objects too small and obscure or too large and too powerful. Yet even with this Einstein met his match. As Kaku put it, Einstein was about 50 years ahead of the necessary technology and mathematics to continue making progress.

This book by Kaku is a clean concise summary of Einstein’s activities portrayed against the technical and political challenges of the day. Kaku also discusses recent experiments that have or will provide more proof or insight. The progression from Newtonian thinking of space and time to relativistic thinking admirably describes scientific progress and the rigour to which theories are subject.

In some ways though this book may make you feel like a child in a candy store. There are many referrals to experiments and mathematical properties but no substantiation. If you know the material, the reading is easy, if you don’t you need faith or must investigate elsewhere. Also, the portrayal of Einstein is one sided in that only his positive attributes seem to be mentioned. Everyone has their off days and in adding some of Einstein’s, the portrayal would have been more balanced.

All in all, Einstein’s Cosmos aptly describes Einstein as the amazing person he was who readily deserves the praise of being one of the most influential people of the millennium. As we each age and travel with our planet through space we should take some of the precious time we are granted on Earth to read books like this and perhaps realize a clearer view of where we stand and what we can accomplish.

Buy this book and others from

Review by Mark Mortimer

Book Review: Moon Observer’s Guide

The Moon is a substantial satellite almost half the size of the planet Mars. As fortune would have it only one side of the Moon’s surface ever shows toward Earth. However the Moon is believed to be about 4.6 billion years old and thus it has had ample time to aggregate a fascinating landscape, especially as there is minimal weathering or plate tectonics. Using the typical unaided eye the Moon is seen as a large disc with varying brightness across its surface. However with binoculars or telescopes the surface jumps into bright relief and then fine shadows and patterns tell an amazing story that can be just as exciting as Mars.

The story of the Moon includes many great characters. Tycho and Copernicus are great rayed craters dominating the scene. Mare Imbrium and Mare Tranquillitatis provide a smooth, gentle supporting backdrop for smaller understudies. To see any of these in great detail wait for the Moon’s terminus to highlight their features. The terminus is where the sunlight striking the Moon’s surface fades into the shadows of space. As the light and the surface are at an oblique angle the features have strong shadows, making them stand out and enabling estimates of their height and shape. To accommodate this, the guidebook provides charts of the terminus for each day of the lunar’s 29 days cycle. Each chart is oriented in a North-South reference as seen from a small telescope thus making a perfect reference. Extensive adjoining text gives an appropriate description together with some conjectures about formation. All in all the Moon’s story is varied, gently paced and continually varying.

To compliment these charts there are further notes on the Moon relevant to the space enthusiast. Aides to observing are covered in some detail, these being binoculars and telescopes. The Moon’s presumed formation theory and geology add a nice temporal factor. Stellar events such as libations, occultations, ecliptics and eclipses round out this guide for observing the Moon.

I like the Moon Observer’s Guide. It provides an economical and extensive resource for observing Earth’s satellite. For the astronomy addict it may become quickly trivial but for an introduction it is an invaluable aid.

Buy this book and others from

Review by Mark Mortimer.