Parker Solar Probe Was Blasted by Coronal Mass Ejections 28 Times in 4 Years

Artist's rendition of NASA's Parker Solar Probe. (Credit: NASA Goddard Space Flight Center)

NASA’s Parker Solar Probe (PSP) was launched on August 12, 2018, with the goal of becoming the first spacecraft to touch the Sun while teaching us more about our host star than any spacecraft or solar instrument in human history. Now, a recent study submitted to The Astrophysical Journal discusses the incredible data that PSP collected on coronal mass ejections (CMEs) over a four-year period. This study holds the potential to help scientists and the public better understand the CMEs and how they contribute to space weather.

Continue reading “Parker Solar Probe Was Blasted by Coronal Mass Ejections 28 Times in 4 Years”

Europa Might Not Be Able to Support Life in its Oceans

Natural color image of Europa obtained by NASA's Juno spacecraft. (Credit: NASA/JPL-Caltech/SwRI/MSSS/Kevin M. Gill)

Can Europa’s massive, interior ocean contain the building blocks of life, and even support life as we know it? This question is at the forefront of astrobiology discussions as scientists continue to debate the possibility for habitability on Jupiter’s icy moon. However, a recent study presented at the 55th Lunar and Planetary Science Conference (LPSC) might put a damper in hopes for finding life as a team of researchers investigate how Europa’s seafloor could be lacking in geologic activity, decreasing the likelihood of necessary minerals and nutrients from being recycled that could serve as a catalyst for life.

Continue reading “Europa Might Not Be Able to Support Life in its Oceans”

Planetary Geophysics: What is it? What can it teach us about finding life beyond Earth?

Artist's illustration of terrestrial (rocky) planet interiors. (Credit: NASA)

Universe Today has examined the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, comets, and planetary atmospheres, and how these intriguing scientific disciplines can help scientists and the public better understand how we are pursuing life beyond Earth. Here, we will look inward and examine the role that planetary geophysics plays in helping scientists gain greater insight into our solar system and beyond, including the benefits and challenges, finding life beyond Earth, and how upcoming students can pursue studying planetary geophysics. So, what is planetary geophysics and why is it so important to study it?

Continue reading “Planetary Geophysics: What is it? What can it teach us about finding life beyond Earth?”

Planetary Atmospheres: Why study them? What can they teach us about finding life beyond Earth?

Image of the faint, nitrogen atmosphere of the dwarf planet, Pluto, obtained by NASA’s New Horizons spacecraft on July 14, 2015. (Credit: NASA/JHUAPL/SwRI)

Universe Today has surveyed the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, solar physics, and comets, and what these fantastic scientific fields can teach researchers and space fans regarding the search for life beyond Earth. Here, we will discuss how planetary atmospheres play a key role in better understanding our solar system and beyond, including why researchers study planetary atmospheres, the benefits and challenges, what planetary atmospheres can teach us about finding life beyond Earth, and how upcoming students can pursue studying planetary atmospheres. So, why is it so important to study planetary atmospheres?

Continue reading “Planetary Atmospheres: Why study them? What can they teach us about finding life beyond Earth?”

Comets: Why study them? What can they teach us about finding life beyond Earth?

Image of Comet 67P/Churyumov-Gerasimenko taken by the European Space Agency’s (ESA) Rosetta spacecraft on Jan. 31, 2015. (Credit: ESA/Rosetta/NAVCAM – CC BY-SA IGO 3.0)

Universe Today has explored the importance of studying impact craters, planetary surfaces, exoplanets, astrobiology, and solar physics, and what this myriad of scientific disciplines can teach scientists and the public regarding the search for life beyond Earth. Here, we will explore some of the most awe-inspiring spectacles within our solar system known as comets, including why researchers study comets, the benefits and challenges, what comets can teach us about finding life beyond Earth, and how upcoming students can pursue studying comets. So, why is it so important to study comets?

Continue reading “Comets: Why study them? What can they teach us about finding life beyond Earth?”

Titan Probably Doesn’t Have the Amino Acids Needed for Life to Emerge

Image of Titan’s surface obtained by the European Space Agency’s Huygens probe from an approximate altitude of 10 kilometers (6.2 miles) during the probe’s slow descent to the surface on January 14, 2005. (Credit: ESA/NASA/JPL/University of Arizona)

Does Saturn’s largest moon, Titan, possess the necessary ingredients for life to exist? This is what a recent study published in Astrobiology hopes to address as a team of international researchers led by Western University investigated if Titan, with its lakes of liquid methane and ethane, could possess the necessary organic materials, such as amino acids, that could be used to produce life on the small moon. This study holds the potential to help researchers and the public better understand the geochemical and biological processes necessary for life to emerge throughout the cosmos.

Continue reading “Titan Probably Doesn’t Have the Amino Acids Needed for Life to Emerge”

Brrr. JWST Looks at the Coldest Brown Dwarf

Artist's illustration of a cold brown dwarf star. (Credit: NASA)

What are the atmospheric compositions of cold brown dwarf stars? This is what a recent study published in The Astronomical Journal hopes to address as an international team of researchers used NASA’s James Webb Space Telescope (JWST) to investigate the coldest known brown dwarf star, WISE J085510.83?071442.5 (WISE 0855). This study holds the potential to help astronomers better understand the compositions of brown dwarf stars, which are also known as “failed stars” since while they form like other stars, they fail to reach the necessary mass to produce nuclear fusion. So, what was the motivation behind using JWST to examine the coldest known brown dwarf star?

Continue reading “Brrr. JWST Looks at the Coldest Brown Dwarf”

Solar Physics: Why study it? What can it teach us about finding life beyond Earth?

Image of a coronal mass ejection being discharged from the Sun. (Credit: NASA/Goddard Space Flight Center/Solar Dynamics Observatory)

Universe Today has investigated the importance of studying impact craters, planetary surfaces, exoplanets, and astrobiology, and what these disciplines can teach both researchers and the public about finding life beyond Earth. Here, we will discuss the fascinating field of solar physics (also called heliophysics), including why scientists study it, the benefits and challenges of studying it, what it can teach us about finding life beyond Earth, and how upcoming students can pursue studying solar physics. So, why is it so important to study solar physics?

Continue reading “Solar Physics: Why study it? What can it teach us about finding life beyond Earth?”

There’s One Last Place Planet 9 Could Be Hiding

Artist's illustration of Planet Nine with the Sun and orbit of Neptune (ring) in the distance. (Credit: ESO/Tomruen/nagualdesign)

 A recently submitted study to The Astronomical Journal continues to search for the elusive Planet Nine (also called Planet X), which is a hypothetical planet that potentially orbits in the outer reaches of the solar system and well beyond the orbit of the dwarf planet, Pluto. The goal of this study was to narrow down the possible locations of Planet Nine and holds the potential to help researchers better understand the makeup of our solar system, along with its formation and evolutionary processes. So, what was the motivation behind this study regarding narrowing down the location of a potential Planet Nine?

Continue reading “There’s One Last Place Planet 9 Could Be Hiding”

Saturn’s “Death Star Moon” Mimas Probably has an Ocean Too

Saturn's moon, Mimas, captured by NASA's Cassini spacecraft in 2010. (Credit: NASA/JPL-Caltech/Space Science Institute)

A recent study published in Nature presents a groundbreaking discovery that Saturn’s moon, Mimas, commonly known as the “Death Star” moon due to its similarities with the iconic Star Wars space station, possesses an internal ocean underneath its rocky crust. This study was conducted by an international team of researchers and holds the potential to help planetary geologists better understand the conditions for a planetary body to possess an internal ocean, which could also possess the conditions for life as we know it. While Mimas was photographed on several occasions by NASA’s Cassini spacecraft, including a close flyby in February 2010, what was the motivation behind this recent study regarding finding an internal ocean on Mimas?

Continue reading “Saturn’s “Death Star Moon” Mimas Probably has an Ocean Too”