Comet US10 Catalina: The Final Act

Comet US10 Catalina passes near the bright star Arcturus on January 1st. Image credit and copyright: Alan Tough

Have you seen it? 2016 has kicked off with a fine apparition of a binocular comet: C/2013 US10 Catalina. We’ve been following this icy visitor to the inner solar system the first few mornings of the year, a welcome addition to the morning planetary line-up. Continue reading “Comet US10 Catalina: The Final Act”

Watch Venus Brush Past Saturn This Weekend

Venus rising over the Catalinas near Tucson, Arizona on January 3rd. Image credit: Rob Sparks (@halfastro)

Welcome to 2016! The early morning sky is where the action is this first week of the year. We were out early this Monday morning as skies cleared over Central Florida on our yearly vigil for the Quadrantid meteors. Though only a handful of meteors graced the dawn skies, we were treated to a splendid line-up, including Jupiter, Mars, Spica, Antares, Saturn, Venus, the waning crescent Moon AND a fine binocular view of Comet C/2013 US10 Catalina. Continue reading “Watch Venus Brush Past Saturn This Weekend”

Space Stories to Watch in 2016

An artist's conception of Juno in orbit around Jupiter. image credit: NASA

2015 was an amazing year in space, as worlds such as Pluto and Ceres snapped into sharp focus. 2015 also underlined the mantra that ‘space is hard,’ as SpaceX rode the roller coaster from launch failure, to a dramatic return to flight in December, complete with a nighttime landing of its stage 1 Falcon 9 rocket back at Cape Canaveral. Continue reading “Space Stories to Watch in 2016”

The Top 101 Astronomical Events for 2016

Camping out under dark skies. Image credit and copyright: Michelle Nixon/MNixon Photography

Here it is… our year end look at upcoming events in a sky near you. We’ve been doing this “blog post that takes four months to write” now on one platform or another every year since 2009, and every year, it gets bigger and more diverse, thanks to reader input. This is not a top 10 listicle, and not a full-fledged almanac, but hopefully, something special and unique in between. And as always, some of the events listed will be seen by a large swath of humanity, while others grace the hinterlands and may well go unrecorded by human eyes. We’ll explain our reasoning for drilling down each category, and give a handy list of resources at the end.

Click on any of the graphics included for the top events for each month to enlarge.

Continue reading “The Top 101 Astronomical Events for 2016”

Watch the Moon Occult Aldebaran for Europe Wednesday Night

The Moon occults Aldebaran on October 30th, 2015. Image credit and copyright: Zlatko Orbanic

An early Christmas present is on tap this week for observers in Europe, the United Kingdom and northern Asia, as the waxing gibbous Moon occults (passes in front of) the bright star Aldebaran on the evening of Wednesday December 23rd. Continue reading “Watch the Moon Occult Aldebaran for Europe Wednesday Night”

Catch This Season’s ‘Other’ Comet: S2 PanSTARRS

Comet C/2014 S2 PanSTARRS, imaged on October 10th, 2015. Image credit and copyright: Tom Wildoner

Now is the time to catch binocular Comet C/2014 S2 PanSTARRS, as it tops +8 magnitude ahead of predictions this month and crosses circumpolar northern skies. Will this Christmas comet stay bright post-perihelion, rivaling other comets into early 2016?  Continue reading “Catch This Season’s ‘Other’ Comet: S2 PanSTARRS”

The 2015 Geminids: Observing, History, Imaging, Prognostications and More

An early 2015 Geminid from the morning of December 9th. Image credit and copyright: Kevin Palmer
An early 2015 Geminid from the morning of December 9th. Image credit and copyright: Kevin Palmer

Author’s note: as of Thursday morning December 10th, the Geminids are already active. Canadian Meteor Orbit Radar (CMOR) has picked up a consistent stream of radio pings hailing from the constellation Gemini over the last few mornings, and reports of early Geminid activity seen by observers worldwide have been reported. If you’ve got clear skies this weekend over the next few mornings, don’t miss a sure-fire shower.

A grand finale meteor shower graces the skies of the Earth this weekend, as the December Geminid meteors reach their peak early Sunday morning into Monday. Continue reading “The 2015 Geminids: Observing, History, Imaging, Prognostications and More”

Astro-Challenge: Watch the Moon Occult Venus in the Daytime

The Moon meets Venus on February 26th, 2014. Image credit and copyright: Konstantinos Spanos
The Moon meets Venus on February 26th, 2014. Image credit and copyright: Konstantinos Spanos

The year 2015 saved one of the best astronomical events for last, as the waning crescent Moon occults (passes in front of) the planet Venus as seen from North America on Monday, December 7th.

This is the final of seven naked eye occultations of planets by the Moon in 2015, three of which involve Venus. It’s also the best of the year, well positioned for North America. Continue reading “Astro-Challenge: Watch the Moon Occult Venus in the Daytime”

Hayabusa 2 to Flyby the Earth Tomorrow

An artist's image of Hayabusa leaving Earth. Hayabusa was a Japanese sample return mission to the asteroid 25143 Itokawa. The mission was a partial success. A sample mission to Earth's sister planet is the holy-grail for the exploration of Venus. Image credit: JAXA

A space-faring friend pays our fair planet a visit this week on the morning of December 3rd, as the Japanese Space Agency’s Hayabusa 2 spacecraft passes the Earth.

The Flyby

Rick Baldridge on the SeeSat-L message board notes that Hayabusa-2 will pass 9,520 kilometers from the Earth’s center or 3,142 kilometers/1,885 miles from the Earth’s surface at 10:08 UT/5:08 AM EST on Thursday, December 3rd, passing from north-to-south above latitude 18.7 north, longitude 189.8 east just southwest of the Hawaiian Islands.

Unfortunately, the sighting opportunities for Hayabusa-2 aren’t stellar: even at its closest, the 1.5 meter-sized spacecraft is about nine times more distant than the International Space Station and satellites in low Earth orbit. To compound the challenge, Hayabusa-2 passes into the Earth’s shadow from 9:58 UT to 10:19 UT.

Image credit: JAXA
The path of Hayabusa-2 past the Earth. Image credit: JAXA

Still, skilled observers with large telescopes and sophisticated tracking rigs based along the Pacific Rim of North America might just catch sight of Hayabusa-2 as it speeds by. The JPL Horizons ephemeris generator is a great resource to create a customized positional chart in right ascension and declination for spacecraft for your given location, including Hayabusa-2.

Image credit: JAXA
The Earth-Moon pair snapped by Hayabusa-2 on November 26th from about three million kilometers distant. Image credit: JAXA

Hayabusa-2 won’t crack 20 degrees elevation for observers along the U.S. West Coast, putting it down in the atmospheric murk of additional air mass low to the horizon. This also tends to knock the brightness of objects down a magnitude or so… estimates place Hayabusa-2 at around magnitude +13 shortly before entering the Earth’s shadow. That’s pretty faint, but still, there are some dedicated observers with amazing rigs out there, and it’s quite possible someone could nab it. Hawaii-based observers should have the best shot at it, though again, it’ll be in the Earth’s shadow at its very closest…

Amateur radio satellite trackers are also on the hunt for the carrier-wave signal of the inbound Hayabusa-2 mission. You can also virtually fly along with the spacecraft until December 5th: (H/T @ImAstroNix):

A simulation of tomorrow's flyby. Image Credit: JAXA
A simulation of tomorrow’s flyby. Image Credit: JAXA

Probably the best eye-candy images will come from the spacecraft itself: already, Hayabusa-2 has already snapped some great images of the Earth-Moon pair using its ONC-T optical navigation camera during its inbound leg.

Image credit: JAXA
A close-up of Hayabusa-2’s view of the Earth and Moon. Image credit: JAXA

Other notable missions used Earth flybys en route to their final destinations, including Cassini in 1999, and Juno in 2013. Cassini’s return caused a bit of a stir as it has a plutonium-powered RTG aboard, though Earth and its inhabitants were never in danger. A nuclear RTG actually reentered during the return of Apollo 13, with no release of radioactive material. Meant for the ALSEP science package on the surface of the Moon, it was deposited on the reentry of the Lunar Module over the Marinas Trench in the South Pacific. And no, Hayabusa-2 carries no radioactive material, and in any event, it’s missing the Earth by about a quarter of its girth.

The successor to the Hayabusa (‘Peregrine Falcon’ in Japanese) mission which carried out a historic asteroid sample return from 25143 Itokawa in 2010, Hayabusa-2 launched atop an H-IIA rocket from Tanegashima, Japan exactly a year ago tomorrow on a six year mission to asteroid 162173 Ryugu. This week’s Earth flyby will boost the spacecraft an additional 1.6 kilometers per second to an outbound velocity towards its target of 31.9 kilometers per second post-flyby.

Image credit: JAXA
Launch of an H-IIA rocket with Hayabusa-2. Image credit: JAXA

Like its predecessor, Hayabusa-2 is a sample return mission. Unlike the original Hayabusa, however, Hayabusa-2 is more ambitious, also carrying the MASCOT (Mobile Asteroid Surface Scout) lander and an explosive seven kilogram impactor. Hayabusa-2 will deploy a secondary camera in orbit to watch the detonation and will briefly touch down at the impact site to collect material.

If all goes as planned, Hayabusa-2 will return to Earth in late 2020.

NASA has its own future asteroid sample return mission planned, named OSIRIS-REx. This mission will launch in September of next year to rendezvous with asteroid 101955 Bennu in September 2019 and return to Earth in September 2023.

An artist's conception on Hayabusa 2 at asteroid . Image credit: JAXA
An artist’s conception on Hayabusa 2 at asteroid 162173 Ryugu. Image credit: JAXA

We’re entering the golden age of asteroid exploration, for sure. And this all comes about as the U.S. authorized asteroid mining just last week (or at least, as stated, ‘asteroid utilization’) under the controversial U.S. Commercial Space Launch Competitiveness Act. But the original Hayabusa mission brought back mere micro-meter-sized dust grains, highlighting just how difficult asteroid mining is using present technology…

Perhaps, for now, its more cost effective to simply wait for the asteroids to come to us as meteorites and just scoop ’em up. We’ll be keeping an eye out over the next few days for images of Hayabusa-2 as it speeds by, and more postcards of the Earth-Moon system from the spacecraft as it heads towards its 2018 rendezvous with destiny.

The Solar Heliospheric Observatory at 20

Image credit:

Flashback to 1995: Clinton was in the White House, Star Trek Voyager premiered, we all carried pagers in the pre-mobile phone era, and Windows 95 and the Internet itself was shiny and new to most of us. It was also on this day in late 1995 when our premier eyes on the Sun—The SOlar Heliospheric Observatory (SOHO)—was launched. A joint mission between NASA and the European Space Agency, SOHO lit up the pre-dawn sky over the Florida Space Coast as it headed space-ward atop an Atlas IIAS rocket at 3:08 AM EST from launch complex 39B at Cape Canaveral Air Force Station.

Envisioning SOHO

soho_photo3
SOHO on Earth

There aren’t a whole lot of 20th century spacecraft still in operation; SOHO joins the ranks of Hubble and the twin Voyager spacecraft as platforms from another era that have long exceeded their operational lives. Seriously, think back to what YOU were doing in 1995, and what sort of technology graced your desktop. Heck, just thinking of how many iterations of mobile phones spanned the last 20 years is a bit mind-bending. A generation of solar astronomers have grown up with SOHO, and the space-based observatory has consistently came through for researchers and scientists, delivering more bang for the buck.

“SOHO has been truly extraordinary and revolutionary in countless ways,” says  astrophysicist Karl Battams at the Naval Research Laboratory in Washington D.C. “SOHO has completely changed our way of thinking about the Sun, solar active regions, eruptive events, and so much more. I honestly can’t think of a more broadly influential space mission than SOHO.”

SOHO has monitored the Sun now for the complete solar cycle #23 and well into the ongoing solar cycle #24. SOHO is a veritable Swiss Army Knife for solar astrophysics, not only monitoring the Sun across optical and ultraviolet wavelengths, but also employing the Michelson Doppler Imager to record magnetogram data and the Large Angle Spectrometric Coronograph (LASCO) able to create an artificial solar eclipse and monitor the pearly white corona of the Sun.

Image credit
Peering into the solar interior.

SOHO observes the Sun from its perch one million miles sunward located at the L1 Sun-Earth point. It actually circles this point in space in what is known as a lissajous, or ‘halo’ orbit.

SOHO has revolutionized solar physics and the way we perceive our host star. We nearly lost SOHO early on in its career in 1998, when gyroscope failures caused the spacecraft to lose a lock on the Sun, sending it into a lazy one revolution per minute spin. Quick thinking by engineers led to SOHO using its reaction wheels as a virtual gyroscope, the first spacecraft to do so. SOHO has used this ad hoc method to point sunward ever since. SOHO was also on hand to document the 2003 Halloween flares, the demise of comet ISON on U.S. Thanksgiving Day 2013, and the deep and strangely profound solar minimum that marked the transition from solar cycle 23 to 24.

What was your favorite SOHO moment?

Massive sunspot
A massive sunspot witnessed by SOHO in 2000, compared to the Earth.

SOHO is also a champion comet hunter, recently topping an amazing 3000 comets and counting. Though it wasn’t designed to hunt for sungrazers, SOHO routinely sees ’em via its LASCO C2 and C3 cameras, as well as planets and background stars near the Sun. The effort to hunt for sungrazing comets crossing the field of view of SOHO’s LASCO C3 and C2 cameras represents one of the earliest crowd-sourced efforts to do volunteer science online. SOHO has discovered enough comets to characterize and classify the Kreutz family of sungrazers, and much of this effort is volunteer-based. SOHO grew up with the internet, and the images and data made publicly available are an invaluable resource that we now often take for granted.

Image credit
A ‘neat’ image…  Comet NEAT photobombs the view of SOHO’s LASCO C3 camera.

NASA/ESA has extended SOHO’s current mission out to the end of 2016. With any luck, SOHO will complete solar cycle 24, and take us into cycle 25 to boot.

“Right now, it (SOHO) is operating in a minimally funded mode, with the bulk of its telemetry dedicated solely to the LASCO coronagraph,” Battams told Universe Today. “Many of its instruments have now been superseded by instruments on other missions. As of today it remains healthy, and I think that’s a testament to the amazing collaboration between ESA and NASA. Together, they’ve kept a spacecraft designed for a two-year mission operating for twenty years.”

Today, missions such as the Solar Dynamics Observatory, Hinode, and Proba-2 have joined SOHO in watching the Sun around the clock. The solar occulting disk capabilities of SOHO’s LASCO C2 and C3 camera remains unique, though ESA’s Proba-3 mission launching in 2018 will feature a free-flying solar occulting disk.

Happy 20th SOHO… you’ve taught us lots about our often tempestuous host star.

-It’s also not too late to vote for your favorite SOHO image.