Search Narrows For Planet Nine

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories. Credit:
The imagined view from Planet Nine looking back toward the sun. Astronomers think the huge, distant planet is gaseous, similar to the other giant planets in our solar system.
An imagined view from Planet Nine looking back toward the Sun. Astronomers think the massive, distant planet is gaseous, similar to the other giant planets in our Solar System. Credit: Wikipedia

Last month, planetary scientists Mike Brown and  Konstantin Batygin of the California Institute of Technology found evidence of a giant planet tracing a bizarre, highly elongated orbit in the outer Solar System. Nicknamed Planet Nine, it’s estimated to be 10 times more massive than Earth with a diameter as large as 16,000 miles (25,750 km).  The putative planet orbits about 20 times farther from the Sun on average than Neptune or some 56 billion miles away; at that tremendous distance it would take between 10,000 and 20,000 years to complete one orbit around the Sun.

The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Batygin and Brown show that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC); [Diagram created using WorldWide Telescope.]
The six most distant known objects in the Solar System with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Also, when viewed in three dimensions, they tilt nearly identically away from the plane of the solar system. Batygin and Brown showed that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech/R. Hurt (IPAC); Diagram created using WorldWide Telescope
Planet Nine’s existence is inferred through mathematical modeling and computer simulations based on the clustering of six remote asteroids in the Kuiper Belt, a vast repository of icy asteroids and comets beyond Neptune. Brown and Batyginsay there’s only a 0.007% chance or about 1 in 15,000 that the clustering could be a coincidence.

All well and good. But with such an enormous orbit, astronomers face the daunting task of searching vast swaths of space for this needle in a haystack. Where to begin? A study done by a team of French scientists may help narrow the search. In a recent paper appearing in Astronomy and Astrophysics, astronomer Agnes Fienga and colleagues looked at what effect a large Kuiper Belt planet would have on the orbits of other planets in the Solar System, focusing their study on Saturn. Thanks to NASA’s Cassini orbiter, which has been orbiting Saturn since 2004, we can precisely calculate Saturn’s position along its orbit.

Based on a careful study of Saturn's orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to "possible" and "probable" zones. Source: CNRS, Cote d'Azur and Paris observatories . Created by the author
Based on a careful study of Saturn’s orbit and using mathematical models, French scientists were able to whittle down the search region for Planet Nine to “possible” and “probable” zones. Source: CNRS, Cote d’Azur and Paris observatories , created by the author

Based on the planet’s “residuals”, the difference between the calculated position of Saturn versus what was actually observed, the team was able to exclude two sections of its potential orbit and home in on “probable” swath and a much larger “possible” section of the orbit. The process may sound familiar, since it was the one used to discover another planet more than 150 years ago — Neptune. Back then, irregularities (residuals) in the motion of Uranus led astronomers in 1847 to predict a more distant 8th planet as the cause. On September 24, 1846, Johann Galle discovered Neptune only 1° from its position predicted by French mathematician Urbain LeVerrier.

While the current solution for Planet Nine doesn’t come anywhere near as close, it’s a step in the right direction.

Your Favorite Planet May Soon Turn Up In The Mail

The Postal Service will showcase some of the more compelling historic, full-disk images of the planets obtained during the last half-century of space exploration. Some show the planets’ “true color” like Earth and Mars — what one might see if traveling through space. Others, such as Venus, use colors to represent and visualize certain features of a planet based in imaging data. Still others (red storms on Uranus) use the near-infrared spectrum to show things that cannot be seen by the human eye. Credits: USPS/Antonio Alcalá © 2016 USPS
The Postal Service will showcase some of the more compelling historic, full-disk images of the planets obtained during the last half-century of space exploration. Some show the planets’ “true color” like Earth and Mars — what one might see if traveling through space. Others, such as Venus, use colors to represent and visualize certain features of a planet based in imaging data. Still others (red storms on Uranus) use the near-infrared spectrum to show things that cannot be seen by the human eye. Credits: USPS/Antonio Alcalá © 2016 USPS
The Postal Service will showcase some of the more compelling historic, full-disk images of the planets obtained during the last half-century of space exploration. Some show the planets’ “true color” like Earth and Mars — what one might see if traveling through space. Others, such as Venus, use colors to represent and visualize certain features of a planet based in imaging data. Still others (red storms on Uranus) use the near-infrared spectrum to show things invisible to the human eye.
Credits: USPS/Antonio Alcalá © 2016 USPS

Whenever I go to the post office to pick up stamps I always ask for the most colorful ones. No dead president heads for me. Mailing letters is a rare thing nowadays — might as well choose something colorful and interesting. How sweet then that we’ll soon be able to pick and stick our favorite planets (and dwarf planet!) on the mail and send them flying off to far places.

The U.S. Postal Service sneak-previewed a new series of stamps earlier this year highlighting NASA’s Planetary Science program, including a do-over of a famous Pluto stamp commemorating the New Horizons’ historic 2015 flyby. Also in the works are eight new colorful Forever stamps featuring NASA images of the planets, a Global Forever stamp dedicated to Earth’s moon and a tribute to 50 years of Star Trek.

Pluto Explored! In 2006, NASA placed a 29-cent 1991 ‘Pluto: Not Yet Explored’ stamp in the New Horizons spacecraft. With the new stamp, the Postal Service recognizes the first reconnaissance of Pluto in 2015 by NASA’s New Horizon mission. The two separate stamps show an artists’ rendering of the New Horizons spacecraft and the spacecraft’s enhanced color image of Pluto taken near closest approach. Credits: USPS/Antonio Alcalá © 2016 USPS
New Horizons Principal Investigator Alan Stern (left), Johns Hopkins University Applied Physics Laboratory (APL) Director Ralph Semmel (center) and New Horizons Co-Investigator Will Grundy Lowell Observatory hold a print of an U.S. stamp with their suggested update since the New Horizons spacecraft has explored Pluto last July. Credit: NASA/Bill Ingalls

The New Horizons team, which placed a 29-cent 1991 “Pluto: Not Yet Explored” stamp on board the New Horizons spacecraft, is thrilled at the updated stamp recognizing the mission.

“The New Horizons project is proud to have such an important honor from the U.S. Postal Service,” said Alan Stern, New Horizons principal investigator from the Southwest Research Institute. “Since the early 1990s the old, ‘Pluto Not Explored’ stamp served as a rallying cry for many who wanted to mount this historic mission of space exploration. Now that NASA’s New Horizons has accomplished that goal, it’s a wonderful feeling to see these new stamps join others commemorating first explorations of the planets.”

Pluto Explored! In 2006, NASA placed a 29-cent 1991 ‘Pluto: Not Yet Explored’ stamp in the New Horizons spacecraft. With the new stamp, the Postal Service recognizes the first reconnaissance of Pluto in 2015 by NASA’s New Horizon mission. The two separate stamps show an artists’ rendering of the New Horizons spacecraft and the spacecraft’s enhanced color image of Pluto taken near closest approach. Credits: USPS/Antonio Alcalá © 2016 USPS
Pluto Explored! In 2006, NASA placed a 29-cent 1991 ‘Pluto: Not Yet Explored’ stamp in the New Horizons spacecraft. With the new stamp, the Postal Service recognizes the first reconnaissance of Pluto in 2015 by NASA’s New Horizon mission. The two separate stamps show an artists’ rendering of the New Horizons spacecraft and the spacecraft’s enhanced color image of Pluto taken near closest approach.
Credits: USPS/Antonio Alcalá © 2016 USPS

In the upcoming planet series, we’re treated to a color-enhanced Mercury taken by MESSENGER highlighting the planet’s varied terrains. Venus appears in all its naked volcanic glory courtesy of the Magellan probe which mapped the planet using cloud-penetrating radar. Like Mercury, it’s also color-enhanced since it’s impossible to see the surface in visual light even from orbit. Earth and Mars were photographed in natural light with orbiting satellites in tow.

Ten of the round Global Forever stamps of the full moon. Issued at the price of $1.20, this Global Forever stamp can be used to mail a one-ounce letter to any country to which First-Class Mail International service is available. Credits: USPS/Greg Breeding under the art direction of William Gicker © 2016 USPS
Ten of the round Global Forever stamps of the Full Moon. Issued at the price of $1.20, this Global Forever stamp can be used to mail a one-ounce letter to any country to which First-Class Mail International service is available.
Credits: USPS/Greg Breeding under the art direction of William Gicker © 2016 USPS

The Hubble Space Telescope photographed Jupiter in infrared light in 2004, capturing a rare triple transit of the moons Ganymede, Io and Callisto. Saturn comes to us from the Cassini probe, still in good health and routinely sending gorgeous images every month of the ringed planet and its moons. Pity the rings had to be trimmed, but it had to be done to keep all the globes close to the same relative size. Hubble took Uranus’ picture in infrared light, while the Neptune close-up was sent by the Voyager 2 spacecraft in 1989.

Celebrating the 50th anniversary of the television premiere, the new Star Trek Forever stamps showcase four digital illustrations inspired by the television program: the Starship Enterprise inside the outline of a Starfleet insignia, the silhouette of a crewman in a transporter, the silhouette of the Enterprise from above and the Enterprise inside the outline of the Vulcan salute. Credits: USPS/Heads of State under the art direction of Antonio Alcalá © 2016 USPS
Celebrating the 50th anniversary of the television premiere, the new Star Trek Forever stamps showcase four digital illustrations inspired by the television program. Credits: USPS/Heads of State under the art direction of Antonio Alcalá © 2016 USPS

2016 also marks the 50th anniversary of the television premier of Star Trek, which the post office will commemorate with the new Star Trek Forever stamps. They feature four digital illustrations inspired by the television program: the Starship Enterprise inside the outline of a Starfleet insignia, the silhouette of a crewman in a transporter, the silhouette of the Enterprise from above and the Enterprise inside the outline of the Vulcan salute.

The Global Moon stamp was issued on Feb. 22. You can pre-order the Pluto and planet stamps from USPS.com 30 days before their dedication between May 28 and June 4 at the World Stamp Show in New York. Expect the Star Trek series sometime this summer.

NASA Releases Strange ‘Music’ Heard By 1969 Astronauts

Lunar module pilot Eugene Cernan en route to the Moon during the Apollo 10 mission in the spring of 1969. Credit: NASA
Lunar module pilot Eugene Cernan en route to the Moon during the Apollo 10 mission in the spring of 1969. Credit: NASA
Lunar module pilot Gene Cernan en route to the Moon during the Apollo 10 mission in the spring of 1969. Credit: NASA

Calling it music is a stretch, but that’s exactly how the Apollo 10 astronauts described the creepy sounds they heard while swinging around the farside of the moon in May 1969. During the hour they spent alone cut off from communications with Earth, all three commented about a persistent “whistling” sound that lunar module pilot (LMP) likened to “outer-space-type-music”. Once the craft returned to the nearside, the mysterious sounds disappeared.


Apollo 10 Farside-of-the-Moon Music.

Hands down it was aliens! I wish. Several online stories fan the coals of innuendo and mystery with talk of hidden files and NASA cover-ups narrated to disturbing music. NASA agrees that the files were listed as ‘confidential’ in 1969 at the height of the Space Race, but the Apollo 10 mission transcripts and audio have been publicly available at the National Archives since 1973. Remember, there was no Internet back then. The audio files were only digitized and uploaded for easy access in 2012. Outside of the secretive ’60s, the files have been around a long time.

Part of the Apollo 10 transcript of the conversation among the three Apollo 10 astronauts while they orbited the farside of the Moon. Credit: NASA
Part of the Apollo 10 transcript of the conversation among the three Apollo 10 astronauts while they orbited the farside of the Moon. Click the image for a pdf copy of the full mission transcript. Credit: NASA

The story originally broke Sunday night in a show on the cable channel Discovery as part of the “NASA’s Unexplained Files” series; you’ll find their youtube video below. As I listen to the sound file, I hear two different tones. One is a loud, low buzz, the other a whooshing sound. My first thought was interference of some sort for the buzzing sound, but the whoosh reminded me of a whistler, a low frequency radio wave generated by lightning produced when energy from lightning travels out into Earth’s magnetic field from one hemisphere to another. Using an appropriate receiver, we can hear whistlers as descending, whistle-like tones lasting up to several seconds.

Earthrise as photographed by the Apollo 10 crew in May 1969. Credit: NASA
Earthrise as photographed by the Apollo 10 crew in May 1969. Credit: NASA

Lightning’s hardly likely on the Moon, and whistlers require a magnetic field, which the Moon also lacks. The cause turns out to be, well, man-made. Cernan’s take was that two separate VHF radios, one in the lunar module and the other in command module, were interfering with one another to produce the noise. This was later confirmed by Apollo 11 astronaut Mike Collins who flew around the lunar farside alone when Buzz Aldrin and Neil Armstrong walked on the Moon’s surface.

The Apollo 10 command/service module nicknamed "Charlie Brown" orbiting the Moon as seen from the lunar module. Credit: NASA
The Apollo 10 command service module nicknamed “Charlie Brown” orbiting the Moon as seen from the lunar module. Apollo 10 was a full dress rehearsal for the Apollo 11 mission to place a man on the Moon. Click the image to visit the Apollo 10 photo archive. Credit: NASA

In his book Carrying the Fire, Collins writes: “There is a strange noise in my headset now, an eerie woo-woo sound.” He said it might have scared him had NASA’s radio technicians not forewarned him. The “music” played when the two craft were near one another with their radios turned on. Unlike Apollo 10, which never descended to the Moon’s surface but remained near the command module, the Apollo 11 lunar module touched down on the Moon on July 20, 1969. Once it did, Collins writes that the ‘woo-woo’ music stopped.

The astronauts never talked publicly or even with the agency about hearing weird sounds in space for good reason. Higher-ups at NASA might think them unfit for future missions for entertaining weird ideas, so they kept their thoughts private. This was the era of the “right stuff” and no astronaut wanted to jeopardize a chance to fly to the Moon let alone their career.


Outer Space Music Part 1 of NASA’s Unexplained Files —  to be taken with a boulder of salt

In the end, this “music of the the spheres” makes for a fascinating  tidbit of outer space history. There’s no question the astronauts were spooked, especially considering how eerie it must have felt to be out of touch with Earth on the far side of the Moon. But once the sounds stopped, they soldiered on — part of the grand human effort to touch another world.

“I don’t remember that incident exciting me enough to take it seriously,” Gene Cernan told NASA on Monday. “It was probably just radio interference. Had we thought it was something other than that we would have briefed everyone after the flight. We never gave it another thought.”


Messages from the Ringed Planet

Want to hear some real outer space music? Click the Saturn video and listen to the eerie sound of electrons streaming along Saturn’s magnetic field to create the aurora.

Does Antarctica Have A Hidden Layer Of Meteorites Below Its Surface?

Dr. Barbara Cohen is seen with a large meteorite from the Antarctic's Miller Range. Credit: Antarctic Search for Meteorites
ANSMET 2012-2013 team collecting a meteorite sample (Image: Antarctic Search for Meteorites Program / Katherine Joy)
Two members of the Antarctic Search for Meteorites 2012-2013 team use tongs to collect a meteorite near the Transantarctic Mountains. Credit: Katherine Joy, University of Manchester / Antarctic Search for Meteorites Program

In the category of why-didn’t-I think-of-that ideas, Dr. Geoffrey Evatt and colleagues from the University of Manchester struck upon a brilliant hypothesis: that a layer of iron meteories might lurk just below the surface of the Antarctic ice. He’s the lead  author of a recent paper on the topic published in the open-access journal, Nature Communications.

A likely stony meteorite found during the ANSMET 2014-15 expedition in Antarctica. Credit: JSC Curation / NASA
A possible stony meteorite found during the ANSMET 2014-15 expedition in Antarctica. Credit: Antarctic Search for Meteorites Program

Remote Antarctica makes one of the best meteorite collecting regions on the planet. Space rocks have been accumulating there for millennia preserved in the continent’s cold, desert-like climate. While you might think it’s a long and expensive way to go to hunt for meteorites, it’s still a lot cheaper than a sample return mission to the asteroid belt. Meteorites fall and become embedded in ice sheets within the continent’s interior. As that ice flows outward toward the Antarctic coastlines, it pushes up against the Transantarctic Mountains, where powerful, dry winds ablate away the ice and expose their otherworldly cargo.

Meteorite recovery sites in the Transantarctic Mountains. Credit: NASA
Meteorite recovery sites in the Transantarctic Mountains. Credit: NASA

Layer after layer, century after century, the ice gets stripped away, leaving rich “meteorite stranding zones” where hundreds of space rocks can be found within an area the size of a soccer field. Since most meteorites arrive on Earth coated in a black or brown fusion crust from their searing fall through the atmosphere, they contrast well against the white glare of snow and ice. Scientists liken it to a conveyor belt that’s been operating for the past couple million years.

Scientists form snowmobile posses and buzz around the ice fields picking them up like candy eggs on Easter morning. OK, it’s not that easy. There’s much planning and prep followed by days and nights of camping in bitter cold with high winds tearing at your tent. Expeditions take place from October through early January when the Sun never sets.

The U.S. under ANSMET (Antarctic Search for Meteorites, a Case Western Reserve University project funded by NASA), China, Japan and other nations run programs to hunt and collect the precious from the earliest days of the Solar System before they find their way to the ocean or are turned to dust by the very winds that revealed them in the first place. Since systematic collecting began in 1976, some 34,927 meteorites have been recovered from Antarctica as of December 2015.

A team of scientists document the find of a small meteorite found among rocks on the Antarctic ice during the ANSMET 2014-15 hunt. Credit: JSC Curation / NASA
A team of scientists document the find of a small meteorite found among rocks on the Antarctic ice during the ANSMET 2014-15 expedition. Credit: Antarctic Search for Meteorites Program / Vinciane Debaille

Meteorites come in three basic types: those made primarily of rock; stony-irons comprised of a mixture of iron and rock; and iron-rich. Since collection programs have been underway, Antarctic researchers have uncovered lots of stony meteorites, but meteorites either partly or wholly made of metal are scarce compared to what’s found in other collecting sites around the world, notably the deserts of Africa and Oman. What gives?

A fragment of the Sikhote-Alin iron meteorite that fell over eastern Russia (then the Soviet Union) on Feb. 12, 1947. Some of the dimpling are pockets on the meteorite's surface called regmeglypts. Credit: Bob King
This fragment of the massive Sikhote-Alin meteorite that fell over eastern Russia (then the Soviet Union) on Feb. 12, 1947 is a typical iron-nickel meteorite. Another specimen of this meteorite was used in the experiment to determine how quickly it burrowed into the ice when heated.  Credit: Bob King

Dr. Evatt and colleagues had a hunch and performed a simple experiment to arrive at their hypothesis. They froze two meteorites of similar size and shape — a specimen of the Russian Sikhote-Alin iron and NWA 869, an ordinary (stony) chondrite  — inside blocks of ice and heated them using a solar-simulator lamp. As expected, both meteorites melted their way down through the ice in time, but the iron meteorite sank further and  faster. I bet you can guess why. Iron or metal conducts heat more efficiently than rock. Grab a metal camera tripod leg or telescope tube on a bitter cold night and you’ll know exactly what I mean. Metal conducts the heat away from your hand far better and faster than say, a piece of wood or plastic.

Antarctic researchers carefully pack meteorites into collection boxes. Looks cold! Credit: JSC Curation / NASA
Antarctic researchers carefully pack meteorites found along the Transantarctic Range into collection boxes. Looks cold! Credit: Antarctic Search for Meteorites Program / Vinciane Debaille

The researchers performed many trials with the same results and created a mathematical model showing that Sun-driven burrowing during the six months of Antarctic summer accounted nicely for the lack of iron meteorites seen in the stranding zones. Co-author Dr. Katherine Joy estimates that the fugitive meteorites are trapped between about 20-40 inches (50-100 cm) beneath the ice.

Who wouldn’t be happy to find this treasure? Dr. Barbara Cohen is seen with a large meteorite from the Antarctic’s Miller Range. Credit: Antarctic Search for Meteorites Program

You can imagine how hard it would be to dig meteorites out of Antarctic ice. It’s work enough to mount an expedition to pick up just what’s on the surface.

With the gauntlet now thrown down, who will take up the challenge? The researchers suggests metal detectors and radar to help locate the hidden irons. Every rock delivered to Earth from outer space represents a tiny piece of a great puzzle astronomers, chemists and geologist have been assembling since 1794 when German physicist Ernst Chladni published a small book asserting that rocks from space really do fall from the sky.

Like the puzzle we leave unfinished on the tabletop, we have a picture, still incomplete, of a Solar System fashioned from the tiniest of dust motes in the crucible of gravity and time.

 

Hubble Directly Measures Rotation of Cloudy ‘Super-Jupiter’

Illustration of the hot extrasolar planet 2M1207b orbiting a brown dwarf. Credits: NASA, ESA, and G. Bacon/STScI

Astronomers using the Hubble Space Telescope have measured the rotation rate of an extreme exoplanet 2M1207b by observing the varied brightness in its atmosphere. This is the first measurement of the rotation of a massive exoplanet using direct imaging.

This is a composite image of the brown dwarf object 2M1207 (centre) and the fainter object seen near it, at an angular distance of 778 milliarcsec. Designated "Giant Planet Candidate Companion" by the discoverers, it may represent the first image of an exoplanet. Further observations, in particular of its motion in the sky relative to 2M1207 are needed to ascertain its true nature. The photo is based on three near-infrared exposures (in the H, K and L' wavebands) with the NACO adaptive-optics facility at the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory.
This is a composite image of the brown dwarf object 2M1207 (blue-white) and the planet 2M1207b, seen in red, located 170 light years from Earth in the constellation Centaurus. The photo is based on three near-infrared exposures with the taken with the 8.2-m VLT Yepun telescope at the ESO Paranal Observatory. Credit: ESO

Little by little we’re coming to know at least some of the 2,085 exoplanets discovered to date more intimately despite their great distances and proximity to the blinding light of their host stars. 2M1207b is about four times more massive than Jupiter and dubbed a “super-Jupiter”. Super-Jupiters fill the gap between Jupiter-mass planets and brown dwarf stars. They can be up to 80 times more massive than Jupiter yet remain nearly the same size as that planet because gravity compresses the material into an ever denser, more compact sphere.

2M1207b lies 170 light years from Earth and orbits a brown dwarf at a distance of 5 billion miles. By contrast, Jupiter is approximately 500 million miles from the sun. You’ll often hear brown dwarfs described as “failed stars” because they’re not massive enough for hydrogen fusion to fire up in their cores the way it does in our sun and all the rest of the main sequence stars.

Researchers used Hubble’s exquisite resolution to precisely measure the planet’s brightness changes as it spins and nailed the rotation rate at 10 hours, virtually identical to Jupiter’s. While it’s fascinating to know a planet’s spin, there’s more to this extraordinary exoplanet. Hubble data confirmed the rotation but also showed the presence of patchy, “colorless” (white presumably) cloud layers. While perhaps ordinary in appearance, the composition of the clouds is anything but.

 exoplanet 2M1207 b with the Solar System planet Jupiter. Although four times more massive than the Jovian planet, gravity compresses its matter to keep it relatively small. Credit: Wikipedia / Aldaron
Exoplanet 2M1207 b with the Solar System planet Jupiter for comparison. Although four times more massive than the Jovian planet, gravity compresses its matter to keep it relatively small. Credit: Wikipedia / Aldaron

The planet appears bright in infrared light because it’s young (about 10 million years old) and still contracting, releasing gravitational potential energy that heats it from the inside out. All that extra heat makes 2M1207b’s atmosphere hot enough to form “rain” clouds made of vaporized rock. The rock cools down to form tiny particles with sizes similar to those in cigarette smoke. Deeper into the atmosphere, iron droplets are forming and falling like rain, eventually evaporating as they enter the lower levels of the atmosphere.

“So at higher altitudes it rains glass, and at lower altitudes it rains iron,” said Yifan Zhou of the University of Arizona, lead author on the research paper in a recent Astrophysical Journal. “The atmospheric temperatures are between about 2,200 to 2,600 degrees Fahrenheit.” Every day’s a scorcher on 2M1207b.

Both Jupiter and Saturn also emit more heat than they receive from the sun because they too are still contracting despite being 450 times older. The bigger you are, the slower you chill.

Illustration of the extrasolar planet 2M1207b (foreground) orbiting a brown dwarf. Credits: NASA, ESA, and G. Bacon/STScI
Illustration of the extrasolar planet 2M1207b (foreground) orbiting a brown dwarf. Both shine brightly in infrared light. Credits: NASA, ESA, and G. Bacon/STScI

All the planets in our Solar System possess only a fraction of the mass of the Sun. Even mighty Jove is a thousand times less massive. But Mr. Super-Jupiter’s a heavyweight compared to its brown dwarf host, being just 5-7 times less massive. While Jupiter and the rest of the planets formed by the accretion of dust and rocks within a clumpy disk of material surrounding the early Sun, it’s thought 2M1207b and its companion may have formed throughout the gravitational collapse of a pair of separate disks.

This super-Jupiter will an ideal target for the James Webb Space Telescope, a space observatory optimized for the infrared scheduled to launch in 2018. With its much larger mirror — 21-feet (6.5-meters) — Webb will help astronomers better determine the exoplanet’s atmospheric composition and created more detailed maps from brightness changes.

Teasing out the details of 2M1207b’s atmosphere and rotation introduces us to a most alien world the likes of which never evolved in our own Solar System. I feel like I’m aboard the Starship Enterprise visiting far-flung worlds. Only this is better. It’s real.

Send Your Sweetie An Out-Of-This-World Valentine

Mars has a lot of heart (s)! Send one to your Valentine Credit: NASA
Happy Valentine's Day from the Pluto New Horizon's mission! Click to download a pdf file you can print out and give as a valentine. Credit: NASA
Happy Valentine’s Day from the Pluto New Horizon’s mission! Click to download a high resolution pdf file you can print out. Credit: NASA

Still looking for the right card for your sweetheart this Valentine’s Day? Why not do it in cosmic proportion by getting NASA on your side?  The tender-hearted folks at agency may have just what you’re looking for.

The staff at the New Horizons mission headquarters offers two valentines this season that play off Pluto’s heart-shaped, icy plain Tombaugh Regio. While the temperature there hovers around 400 below,  you’re guaranteed a 98.6° smile when your sweetie opens the card and sees your love reflected in glittering nitrogen ice.

Mars has a lot of heart (s)! Click to send you Valentine a Red Planet-themed e-card. Credit: NASA
Mars has a lot of heart (s)! Click to select and send your Valentine a Red Planet-themed e-card. Credit: NASA

Pluto not your thing? Select from 12 different Mars e-card love greetings at this NASA site and blow your partner away in a Martian dust devil of love. Many of the heart-shaped features depicted on the cards are genuine features and include collapse pits, craters and mesas.

Pick from eight different valentines at the OSIRIS-Rex asteroid mission site. Credit: NASA
Click to pick from 8 different valentines at the OSIRIS-Rex asteroid mission site. Credit: NASA

Even the asteroids send their saucy wishes. Check out the delightful series of valentines from the upcoming OSIRIS-Rex sample return mission to 101955 Bennu, slated to launch in September this year and return a sample of the carbonaceous asteroid to Earth in 2023. If you go this route, I’d complement the card with a meal heavy on edible carbonaceous material at your partner’s favorite restaurant.

Happy Valentine’s Day! Spread the love for a happier planet.

NASA Says Indian Event Was Not Meteorite

Pentax K-1000, 50mm lens, Kodak Ektar 100 Exposure ~ 8 seconds at Dusk, Capturing a Bright Fireball, breaking up with debri, Yellow Springs, Ohio. Photo credit: John Chumack

Last Saturday, Feb. 6th, a meteorite reportedly struck a bus driver on the campus of the Bharathidasan Engineering College in southern India. Three students were also injured and several windows were shattered in some kind of explosion. Online videos and stills show a small crater left by the impact. If true, this would be the first time in recorded history a person was struck and killed by a meteorite.


Meteorite or …?

Call me skeptical. Since the purported meteorite weighed about 50 grams — just under two ounces — it would be far too small to cause an explosion or significant impact crater five feet deep and two feet wide as depicted in both video and still photos. There were also no reports of rumbles, sonic booms or sightings of a fireball streaking across the sky, sights and sounds associated with material substantial enough to penetrate the atmosphere and plunge to the ground. Shattered windows would indicate an explosion similar to the one that occurred over Chelyabinsk, Russia in February 2013. The blast wave spawned when the Russian meteorite fractured into thousands of pieces miles overhead pulverized thousands of windows with flying glass caused numerous injuries.

According to a story that ran in The News Minute, a team led by the Indian Space Research Organization (IRSO) recovered an object 2 cm (3/4 inch) in width that weighed 50 grams and looked like a meteorite with “air bubbles on its rigid surface”. There’s also been chatter about meteor showers dropping meteorites to Earth, with various stories reporting that there no active meteor showers at the time of the driver’s death. For the record, not a single meteorite ever found has been linked to a shower. Dust and tiny bits of comets produce most shower meteors, which vaporize to fine soot in the atmosphere.

Now even NASA says that based on images posted online, the explosion is “land based” rather than a rock from space.

There have been close calls in the past most notably in Sylacauga, Alabama  On November 30, 1954 at 2:46 p.m. an 8.5 lb rock crashed through the roof of a home not far from that town, hit a radio console, bounced off the floor and struck the hand and hip of 31-year-old Ann Hodges who was asleep on the couch at the time. She awoke in surprise and pain thinking that a space heater had blown up. But when she noticed the hole in the roof and a rock on the floor, Hodges figured the neighborhood kids had been up to no good.

Dr. Moody James shows where Ann Hodges was struck in the hip by an 8.5 lb meteorite that crashed through her roof (right). The photos appeared in the Dec. 13, 1954 issue of Life magazine. Photo by Jay Leviton, Time & Life Pictures, Getty Images
Dr. Moody James shows where Ann Hodges was struck in the hip by an 8.5 lb meteorite that crashed through her roof (right). The photos appeared in the Dec. 13, 1954 issue of Life magazine. Photo by Jay Leviton, Time & Life Pictures, Getty Images

Fortunately her injuries weren’t serious. Ann became a sudden celebrity; her photo even appeared on the cover of Life magazine with a story titled “A Big Bruiser From The Sky”. In 1956 she donated the meteorite to the Alabama Museum of Natural History in Tuscaloosa, where you can still see it to this day. A second meteorite from the fall weighing 3.7 lbs. was picked up the following day by Julius K. McKinney in the middle of a dirt road. McKinney sold his fragment to the Smithsonian and used the money to purchase a small farm and used car.

Claims of people getting hit by meteorites have been on the increase in the past few years with the growth of the social media. Some stories have been deliberately made up and none have been verified. This would appear to be another tall tale if only based upon the improbabilities. In the meantime I’ve dug around and discovered another story that’s more probable and may indeed be the truth, though I have no way as of yet to independently verify it.

Police at the college say that two of the school’s gardeners were burning materials from the garden when the fire inadvertently set off sticks of dynamite that had been abandoned “amid the rocks” when the college was first built. The driver, by the name of Kamaraj and another driver, Sultan, were drinking water nearby when they were hit by the shrapnel and flying glass. Kamaraj began bleeding and was rushed to a hospital but died on the way. More HERE.

In the meantime, we only hope officials get to the bottom of the tragic death.

Peculiar ‘Cauliflower Rocks’ May Hold Clues To Ancient Mars Life

"Cauliflower" shaped silica-rich rocks photographed by the Spirit Rover near the Home Plate rock formation in Gusev Crater in 2008. Could microbes have built their nodular shapes? Credit: NASA/JPL-Caltech
"Cauliflower" shaped silica-rich rocks photographed by the Spirit Rover near the Home Plate rock formation in Gusev Crater in 2008. Could microbes have built their nodular shapes? Credit: NASA/JPL-Caltech
“Cauliflower” shaped silica-rich rocks photographed by the Spirit Rover near the Home Plate rock formation in Gusev Crater in 2008. Credit: NASA/JPL-Caltech

Evidence of water and a warmer, wetter climate abound on Mars, but did life ever put its stamp on the Red Planet? Rocks may hold the secret. Knobby protuberances of rock discovered by the Spirit Rover in 2008 near the rock outcrop Home Plate in Gusev Crater caught the attention of scientists back on Earth. They look like cauliflower or coral, but were these strange Martian rocks sculpted by microbes, wind or some other process?

Close-up of the lobed silica rocks on Mars photographed by the Spirit Rover on Sol 1157. Credit: NASA/ JPL-Caltech
Close-up of the lobed silica rocks on Mars photographed by the Spirit Rover’s microscopic imager on Sol 1157. It’s not known where wind (or other non-biological process) or micro-life had a hand in creating these shapes. Credit: NASA/ JPL-Caltech

When analyzed by Spirit’s mini-TES (Mini-Thermal Emission Spectrometer), they proved to be made of nearly pure silica (SiO2), a mineral that forms in hot, volcanic environments. Rainwater and snow seep into cracks in the ground and come in contact with rocks heated by magma from below. Heated to hundreds of degrees, the water becomes buoyant and rises back toward the surface, dissolving silica and other minerals along the way before depositing them around a vent or fumarole. Here on Earth, silica precipitated from water leaves a pale border around many Yellowstone National Park’hot springs.

The Grand Prismatic Spring at Yellowstone National Park. Could it be an analog to similar springs, hydrothermal vents and geysers that may once have existed in Gusev Crater on Mars? Credit: Jim Peaco, National Park Service
The Grand Prismatic Spring at Yellowstone National Park. Could it be an analog to similar springs, hydrothermal vents and geysers that may once have existed in Gusev Crater on Mars? Credit: Jim Peaco, National Park Service

Both at Yellowstone, the Taupo Volcanic Zone in New Zealand and in Iceland, heat-loving bacteria are intimately involved in creating curious bulbous and branching shapes in silica formations that strongly resemble the Martian cauliflower rocks. New research presented at the American Geophysical Union meeting last month by planetary geologist Steven Ruff and geology professor Jack Farmer, both of Arizona State University, explores the possibility that microbes might have been involved in fashioning the Martian rocks, too.


A sizzling visit to El Tatio’s geysers

The researchers ventured to the remote geyser fields of El Tatio in the Chilean Atacama Desert to study an environment that may have mimicked Gusev Crater billions of years ago when it bubbled with hydrothermal activity. One of the driest places on Earth, the Atacama’s average elevation is 13,000 feet (4 km), exposing it to considerably more UV light from the sun and extreme temperatures ranging from -13°F to 113°F (-10° to 45°C). Outside of parts of Antarctica, it’s about as close to Mars as you’ll find on Earth.

Ruff and Farmer studied silica deposits around hot springs and geysers in El Tatio and discovered forms they call “micro-digitate silica structures” similar in appearance and composition to those on Mars (Here’s a photo). The infrared spectra of the two were also a good match. They’re still analyzing the samples to determine if heat-loving microbes may have played a role in their formation, but hypothesize that the features are “micro-stromatolites” much like those found at Yellowstone and Taupo.

A stromatolite from Wyoming made of many layers of bacteria-cemented mineral grains. Credit: Bob King
A stromatolite from Wyoming made of many layers of bacteria-cemented mineral grains. Credit: Bob King

Stromatolites form when a sticky film of bacteria traps and cements mineral grains to create a thin layer. Other layers form atop that one until a laminar mound or column results. The most ancient stromatolites on Earth may be about 3.5 billion years old. If Ruff finds evidence of biology in the El Tatio formations in the punishing Atacama Desert environment, it puts us one step closer to considering the possibility that ancient bacteria may have been at work on Mars.

Scientists have found evidence that Home Plate at Gusev crater on Mars is composed of debris deposited from a hydrovolcanic explosion. The finding suggests that water may have been involved in driving an eruption that formed the deposits found on Home Plate. Spirit found the silica-rich rocks at lower right near
Scientists have found evidence that Home Plate at Gusev crater on Mars is composed of debris deposited from a hydrovolcanic explosion. The finding suggests that water may have been involved in driving an eruption that formed the deposits found on Home Plate. Spirit found the silica-rich rocks at lower right near Tyrone in 2008. Credit: NASA/JPL-Caltech

Silica forms may originate with biology or from non-biological processes like wind, water and other environmental factors. Short of going there and collecting samples, there’s no way to be certain if the cauliflower rocks are imprinted with the signature of past Martian life. But at least we know of a promising place to look during a future sample return mission to the Red Planet. Indeed, according to Ruff, the Columbia Hills inside Gusev Crater he short list of potential sites for the 2020 Mars rover.

More resources:

Space Station Back At Dusk / See Orion’s Curlicue and Five Dawn Planets

Rays of aurora borealis reach 60 miles and higher over the Pacific Northwest on Jan. 20, 2016 in this photo taken by astronauts Scott Kelly and Tim Peake from the International Space Station. Credit: NASA

I hadn’t been paying attention, so I was pleasantly surprised two nights ago to see the International Space Station (ISS) made a bright pass in the southwestern sky. A quick check revealed that another round of evening passes had begun for locations across the central and northern U.S., Canada and Europe.  I like the evening ones because they’re so much convenient to view than those that occur at dawn. You can find out when the space station passes over your house at NASA’s Spot the Station site or Heavens Above.

The six-member Expedition 46 crew are wrapping up their work week on different types of research including botany, bone loss and pilot testing. Plants are being grown on the International Space Station so future crews can learn to become self-sustainable as they go farther out in space. While they work their jobs speeding at more than 17,000 mph overhead, we carry on here on the surface of the blue planet.

Edgar Mitchell stands by the U.S. flag he and fellow astronaut Alan Shepard planted on the Fra Mauro region of the moon back in February 1971. Credit: NASA
Edgar Mitchell stands by the U.S. flag he and fellow astronaut Alan Shepard planted on the Fra Mauro region of the moon back in February 1971. Credit: NASA

U.S. astronaut Scott Kelly regularly tweets photos from the station and recently noted the passing of Apollo 14 astronaut Edgar Mitchell, who died Thursday at age 85 on the eve of the 45th anniversary of his lunar landing on February 5, 1971. Mitchell was one of only 12 people to walk on the moon and described the experience to the UK Telegraph in 2014:


Relive the Mitchell’s Apollo 14 mission to the moon in 9 minutes and 57 seconds

“Looking at Earth from space and seeing it was a planet in isolation … that was an experience of ecstasy, realizing that every molecule in our bodies is a system of matter created from a star hanging in space. The experience I had was called Samadhi in the ancient Sanskrit, a feeling of overwhelming joy at seeing the Earth from that perspective.”

A pair of binoculars will make the "Curlicue" pop in Orion's Belt. Although the stars aren't related, they form a delightfully curvy line-of-sight pattern. Credit: Bob King
A pair of binoculars will make the “Curlicue” pop in Orion’s Belt. Although the stars aren’t related, they form a delightfully curvy line-of-sight pattern. Credit: Bob King

Only a human could stand in so barren and forbidding a place and experience such profound joy. You don’t have to go to the moon to be moved by sights in the night. Just step outside and watch the ISS glide by or grab a pair of binoculars and aim them at Orion’s Belt. Orion stands due south around 8 o’clock in in mid-February practically shouting to be looked at.

A pair of binoculars will make the "Curlicue" pop in Orion's Belt. Although the stars aren't related, they form a delightfully curvy line-of-sight pattern. Credit: Bob King
This wider view shows the Belt, Curlicue and the Orion Nebula just to the south — all excellent objects for binocular study. Stellarium

The Belt is lovely enough, but its surroundings glitter with stars just below the naked eye limit, in particular a little curlicue or “S” between Alnilam and Mintaka composed of 6th and 7th magnitude stars. Look for it in any pair of binoculars and don’t stop there. Take a few minutes to sweep the area and enjoy the starry goodness about then drop a field of view south for a look at the Orion Nebula. Inside this fuzzy spot 10 light years across and 1,350 light years away, hundreds of new stars are incubating, waiting for the day they can blaze forth like their compadres that make up the rest of Orion.

A thin crescent moon visited Venus and fainter Mercury this morning Feb. 6th at dawn over Rome, Italy. Credit: Gianluca Masi
A thin crescent moon visited Venus and fainter Mercury this morning Feb. 6th at dawn over Rome, Italy. Credit: Gianluca Masi

After touting the advantages of evening sky watching, forgive me if I also direct you to the morning sky and potential sleep loss. Although the waning crescent moon has now departed the scene, the wonderful alignment of Mercury, Venus, Saturn, Mars and Jupiter remains visible in the coming week even as Mercury slowly sinks back toward the eastern horizon. If you haven’t seen this “gang of 5”, set your alarm for a look starting about an hour before sunrise.

This map shows the entire southern sky around 45 minutes to an hour before sunrise Sunday morning Feb. 7. The ecliptic is the plane of Earth's orbit projected into space and the "highway" taken by the sun, Moon and planets as they orbit the sun. Although Mercury is lowest, it's only about 4.5 degrees from Venus and easy to find. Stellarium
This map shows the entire southern sky around 45 minutes to an hour before sunrise Sunday morning Feb. 7. The ecliptic is the plane of Earth’s orbit projected into space and the “highway” taken by the sun, Moon and planets as they orbit the sun. Although Mercury is lowest, it’s only about 4.5 degrees from Venus and easy to find. Stellarium

Find a location with as wide open a view as possible of the southeastern horizon. Jupiter, Mars and Saturn are plenty high up at that time and easy to spot, but Venus and Mercury hover only 5°-10° high. Both will pose no problem if you can get the trees and buildings out of the way! By the end of the coming week, Mercury will become challenging and then slip away.

Clear skies!

Viewing Guide to the 2015 Geminid Meteor Shower

A brilliant Geminid flashes below Sirius and Orion over Mount Balang in China. Credit: NASA/Alvin Wu
A brilliant Geminid flashes below Sirius and Orion over Mount Balang in China. Credit: NASA/Alvin Wu

2015 looks like a fantastic year for the Geminids. With the Moon just 3 days past new and setting at the end of evening twilight, conditions couldn’t be more ideal. Provided the weather cooperates! But even there we get a break. With a maximum of 120 meteors per hour, the shower is expected to peak around 18:00 UT (1 p.m. EST, 10 a.m. PST) December 14th, making for two nights of approximately equal activity: Sunday night Dec. 13-14 and Monday night Dec. 14-15.  Continue reading “Viewing Guide to the 2015 Geminid Meteor Shower”