Looking to solve this, Tabetah and Melosh began considering how high-air pressure in front of a meteor would seep into its pores and cracks, pushing the body of the meteor apart and causing it to explode. As Melosh explained in a Purdue University News press release:
“There’s a big gradient between high-pressure air in front of the meteor and the vacuum of air behind it. If the air can move through the passages in the meteorite, it can easily get inside and blow off pieces.”
“There’s a big gradient between high-pressure air in front of the meteor and the vacuum of air behind it. If the air can move through the passages in the meteorite, it can easily get inside and blow off pieces.”
“I’ve been looking for something like this for a while. Most of the computer codes we use for simulating impacts can tolerate multiple materials in a cell, but they average everything together. Different materials in the cell use their individual identity, which is not appropriate for this kind of calculation.”
“I’ve been looking for something like this for a while. Most of the computer codes we use for simulating impacts can tolerate multiple materials in a cell, but they average everything together. Different materials in the cell use their individual identity, which is not appropriate for this kind of calculation.”