Juno Isn't Exactly Where it's Supposed To Be. The Flyby Anomaly is Back, But Why Does it Happen?

Juno Isn't Exactly Where it's Supposed To Be. The Flyby Anomaly is Back, But Why Does it Happen?

"The “flyby anomaly” is a problem in astrodynamics discovered by a JPL’s team of researchers lead by John Anderson in the early 90s. When they tried to fit the whole trajectory of the Galileo spacecraft as it approached the Earth on December, 8th, 1990, they found that this only can be done by considering that the ingoing and outgoing pieces of the trajectory correspond to asymptotic velocities that differ in 3.92 mm/s from what is expected in theory.

"The effect appears both in the Doppler data and in the ranging data, so it is not a consequence of the measurement technique. Later on, it has also been found in several flybys performed by Galileo again in 1992, the NEAR [Near Earth Asteroid Rendezvous mission] in 1998, Cassini in 1999 or Rosetta and Messenger in 2005. The largest discrepancy was found for the NEAR (around 13 mm/s) and this is attributed to the very close distance of 532 Km to the surface of the Earth at the perigee."

"The “flyby anomaly” is a problem in astrodynamics discovered by a JPL’s team of researchers lead by John Anderson in the early 90s. When they tried to fit the whole trajectory of the Galileo spacecraft as it approached the Earth on December, 8th, 1990, they found that this only can be done by considering that the ingoing and outgoing pieces of the trajectory correspond to asymptotic velocities that differ in 3.92 mm/s from what is expected in theory.

"The effect appears both in the Doppler data and in the ranging data, so it is not a consequence of the measurement technique. Later on, it has also been found in several flybys performed by Galileo again in 1992, the NEAR [Near Earth Asteroid Rendezvous mission] in 1998, Cassini in 1999 or Rosetta and Messenger in 2005. The largest discrepancy was found for the NEAR (around 13 mm/s) and this is attributed to the very close distance of 532 Km to the surface of the Earth at the perigee."

"After the arrival of Juno at Jupiter on July, 4th, 2016, we had the idea of developing our independent orbital model to compare with the fitted trajectories that were being calculated by the JPL team at NASA. After all, Juno is performing very close flybys of Jupiter because the altitude over the top clouds (around 4000 km) is a small fraction of the planet’s radius. So, we expected to find the anomaly here.  This would be an interesting addition to our knowledge of this effect because it would prove that it is not only a particular problem with Earth flybys but that it is universal."

"After the arrival of Juno at Jupiter on July, 4th, 2016, we had the idea of developing our independent orbital model to compare with the fitted trajectories that were being calculated by the JPL team at NASA. After all, Juno is performing very close flybys of Jupiter because the altitude over the top clouds (around 4000 km) is a small fraction of the planet’s radius. So, we expected to find the anomaly here.  This would be an interesting addition to our knowledge of this effect because it would prove that it is not only a particular problem with Earth flybys but that it is universal."

"Our conclusion is that an anomalous acceleration is also acting upon the Juno spacecraft in the vicinity of the perijove (in this case, the asymptotic velocity is not a useful concept because the trajectory is closed). This acceleration is almost one hundred times larger than the typical anomalous accelerations responsible for the anomaly in the case of the Earth flybys. This was already expected in connection with Anderson et al.’s initial intuition that the effect increases with the angular rotational velocity of the planet (a period of 9.8 hours for Jupiter vs the 24 hours of the Earth), the radius of the planet and probably its mass."

"Our conclusion is that an anomalous acceleration is also acting upon the Juno spacecraft in the vicinity of the perijove (in this case, the asymptotic velocity is not a useful concept because the trajectory is closed). This acceleration is almost one hundred times larger than the typical anomalous accelerations responsible for the anomaly in the case of the Earth flybys. This was already expected in connection with Anderson et al.’s initial intuition that the effect increases with the angular rotational velocity of the planet (a period of 9.8 hours for Jupiter vs the 24 hours of the Earth), the radius of the planet and probably its mass."

They also determined that this anomaly appears to be dependent on the ratio between the spacecraft's radial velocity and the speed of light, and that this decreases very fast as the craft's altitude over Jupiter’s clouds changes. These issues were not predicted by General Relativity, so there is a chance that flyby anomalies are the result of novel gravitational phenomena - or perhaps, a more conventional effect that has been overlooked.

Matthew Williams

Matthew Williams

Matt Williams is a space journalist, science communicator, and author with several published titles and studies. His work is featured in The Ross 248 Project and Interstellar Travel edited by NASA alumni Les Johnson and Ken Roy. He also hosts the podcast series Stories from Space at ITSP Magazine. He lives in beautiful British Columbia with his wife and family. For more information, check out his website.