Communicating Via the Cepheid Galactic Internet

cepheid-variable-1.jpg

[/caption]

If an alien species wanted to communicate with Earthlings, or any other civilization that might be out there, how might they do it? Some have proposed microwaves, neutrinos or lasers, or even

moving stars around into patterns

. But why wouldn't aliens just use the internet? The Cepheid Galactic Internet, that is. A group of scientists has proposed that a sufficiently advanced civilization could use Cepheid variable stars as beacons to transmit information throughout the galaxy and beyond. These stars can be seen from long distances and, the scientists say, any technologically advanced civilization would likely observe

Cepheid variables

as distance markers. The group of physicists and astronomers from Hawaii and California propose that Cepheids and any other regular variable stars should be searched for signs of phase modulation and patterns which could be indicative of intentional signaling.

In their paper, the group of scientists proposes that advanced civilizations hoping to communicate would want to use a form of communication with a high data rate, just as everyone on Earth would prefer broadband for their internet. Microwaves and lasers have problems with resolution and noise, while photons or neutrinos would take an enormous amount of power to send messages long distances. And moving stars around? Well, that sounds pretty difficult if not labor intensive. So how about something akin to a T1 line that is already established? All that would need to be done is to "tickle" the star, as the scientists call it, or tweak the Cepheid, to send a message. The researchers write, "Recently, some authors have driven home the point that it is far more energetically practical for transmitting large amounts of data to place long lasting artifacts in stellar systems to which the ETI (extra terrestrial intelligence) may wish communicate information (their history for example) as intelligent life matures and becomes capable of decoding this 'Rosetta stone.'â€

By "tickling" the star, with the delivery of a relatively small amount of energy via neutrinos or other forms of power pulses at the right time could trigger the Cepheid to a specific variability, and a message could be encoded within that variability.

The researchers admit the civilization attempting this would have to be highly advanced. But if some civilization has in fact created a message and sent it via the Cepheid Galactic Internet, all we have do to is open our inbox.

Who knows, they could be on to something. They've even discussed their proposal with

Freeman Dyson.

"It may be a long shot," they write, "but should it be correct, the payoff would be immeasurable for humanity. The beauty of this suggestion seems to be simply that the data already exists, and we need only look at the data in a new way."

Sources: arXiv,

On Orbit

Nancy Atkinson

Nancy Atkinson

Nancy Atkinson is a space journalist and author with a passion for telling the stories of people involved in space exploration and astronomy. She is currently retired from daily writing, but worked at Universe Today for 20 years as a writer and editor. She also contributed articles to The Planetary Society, Ad Astra (National Space Society), New Scientist and many other online outlets.

Her 2019 book, "Eight Years to the Moon: The History of the Apollo Missions,” shares the untold stories of engineers and scientists who worked behind the scenes to make the Apollo program so successful, despite the daunting odds against it. Her first book “Incredible Stories From Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos” (2016) tells the stories of 37 scientists and engineers that work on several current NASA robotic missions to explore the solar system and beyond.

Nancy is also a NASA/JPL Solar System Ambassador, and through this program, she has the opportunity to share her passion of space and astronomy with children and adults through presentations and programs. Nancy's personal website is nancyatkinson.com