Categories: Hubble

Eclectic Group of Galaxies Captured by Hubble

Like a photographer clicking random snapshots of a crowd of people, NASA’s Hubble Space Telescope has taken a view of an eclectic mix of galaxies. In taking this picture, Hubble’s Advanced Camera for Surveys was not looking at any particular target. The camera was taking a picture of a typical patch of sky, while Hubble’s infrared camera was viewing a target in an adjacent galaxy-rich region.

The jumble of galaxies in this image, taken in September 2003, includes a yellow spiral whose arms have been stretched by a possible collision [lower right]; a young, blue galaxy [top] bursting with star birth; and several smaller, red galaxies.

But the most peculiar-looking galaxy of the bunch ? the dramatic blue arc in the center of the photo ? is actually an optical illusion. The blue arc is an image of a distant galaxy that has been smeared into the odd shape by a phenomenon called gravitational lensing. This “funhouse- mirror effect” occurs when light from a distant object is bent and stretched by the mass of an intervening object. In this case the gravitational lens, or intervening object, is a red elliptical galaxy nearly 6 billion light-years from Earth. The red color suggests that the galaxy contains older, cooler stars.

The distant object whose image is smeared into the long blue arc is about 10 billion light-years away. This ancient galaxy existed just a few billion years after the Big Bang, when the universe was about a quarter of its present age. The blue color indicates that the galaxy contains hot, young stars.

Gravitational lenses can be seen throughout the sky because the cosmos is crowded with galaxies. Light from distant galaxies, therefore, cannot always travel through space without another galaxy getting in the way. It is like walking through a crowded airport. In space, a faraway galaxy’s light will travel through a galaxy that is in the way. But if the galaxy is massive enough, its gravity will bend and distort the light.

Long arcs, such as the one in this image, are commonly seen in large clusters of galaxies because of their huge concentrations of mass. But they are not as common in isolated galaxies such as this one. For the gravitational lens to occur, the galaxies must be almost perfectly aligned with each other.

Gravitational lenses yield important information about galaxies. They are a unique and extremely useful way of directly determining the amount of mass, including dark matter, in a galaxy. Galaxies are not just made up of stars, gas, and dust. An invisible form of matter, called dark matter, makes up most of a galaxy’s mass. A study of this newly discovered system, dubbed J033238-275653, was published in the Astrophysical Journal Letters. This study, together with similar observations, may allow astronomers to make the first direct measurements of the masses of bright, nearby galaxies.

Original Source: Hubble News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

23 hours ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

23 hours ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

2 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

2 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

2 days ago