Categories: Astronomy

Star Formation Exposed

Image credit: Chandra

A new photograph taken by the Chandra X-Ray Observatory shows a close up view of the dynamics of star formation in the Tarantula Nebula (aka 30 Doradus). This region, located 160,000 light years away is one of the most active star forming regions in our local group of galaxies and provides a lot of clues to astronomers. In this region, astronomers have identified at least 11 extremely massive stars with ages of only 2 million years with many more young stars packed together so tightly individual stars can’t be resolved.

The Chandra image of the Tarantula Nebula gives scientists a close-up view of the drama of star formation and evolution. The Tarantula, also known as 30 Doradus, is in one of the most active star-forming regions in our Local Group of galaxies. Massive stars are producing intense radiation and searing winds of multimillion-degree gas that carve out gigantic super-bubbles in the surrounding gas. Other massive stars have raced through their evolution and exploded catastrophically as supernovas, leaving behind pulsars and expanding remnants that trigger the collapse of giant clouds of dust and gas to form new generations of stars.

30 Doradus is located about 180,000 light years from Earth in the Large Magellanic Cloud, a satellite galaxy of our Milky Way Galaxy. It allows astronomers to study the details of starbursts – episodes of extremely prolific star formation that play an important role in the evolution of galaxies.

At least 11 extremely massive stars with ages of about 2 million years are detected in the bright star cluster in the center of the primary image (left panel). This crowded region contains many more stars whose X-ray emission is unresolved. The brightest source in this region known as Melnick 34, a 130 solar-mass star located slightly to the lower left of center. On the lower right of this panel is the supernova remnant N157B, with its central pulsar.

Two off-axis ACIS-S chips (right panel) were used to expand the field of view. They show SNR N157C, possibly a large shell-like supernova remnant or a wind-blown bubble created by OB stars. Supernova 1987A is also visible just above and to the right of the Honeycomb Nebula at the bottom center.

In the image, lower energy X-rays appear red, medium energy green and high-energy are blue.

Original Source: Chandra News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

2 hours ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

2 hours ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

2 hours ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

3 hours ago

What Can AI Learn About the Universe?

Artificial intelligence and machine learning have become ubiquitous, with applications ranging from data analysis, cybersecurity,…

3 hours ago

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

24 hours ago