Meteorites Illuminate Mystery of Chromium in Earth’s Core

It’s generally assumed that the Earth’s overall composition is similar to that of chondritic meteorites, the primitive, undifferentiated building blocks of the solar system. But a new study in Science Express led by Frederic Moynier, of the University of California at Davis, seems to suggest that Earth is a bit of an oddball.

 

 

Thin section of a chondritic meteorite. Credit: NASA

Moynier and his colleagues analyzed the isotope signature of chromium in a variety of meteorites, and found that it differed from chromium’s signature in the mantle.

“We show through high-precision measurements of Cr stable isotopes in a range of meteorites, which deviate by up to ~0.4‰ from the bulk silicate Earth, that Cr depletion resulted from its partitioning into Earth’s core with a preferential enrichment in light isotopes,” the authors write. “Ab-initio calculations suggest that the isotopic signature was established at mid-mantle magma ocean depth as Earth accreted planetary embryos and progressively became more oxidized.”

Chromium’s origins. New evidence suggests that, in the early solar nebula (A), chromium isotopes were divided into two components, one containing light isotopes, the other heavy isotopes. In the early Earth (B), these components formed a homogeneous mixture. During core partitioning (C), the core became enriched with lighter chromium isotopes, and the mantle with heavier isotopes. Courtesy of Science/AAAS

The results point to a process known as “core partitioning,” rather than an alternative process involving the volatilization of certain chromium isotopes so that they would have escaped from the Earth’s mantle. Core partitioning took place early on Earth at high temperatures, when the core separated from the silicate earth, leaving the core with a distinct composition that is enriched with lighter chromium isotopes, notes William McDonough, from the University of Maryland at College Park, in an accompanying Perspective piece.

McDonough writes that chromium, Earth’s 10th most abundant element, is named for the Greek word for color and “adds green to emeralds, red to rubies, brilliance to plated metals, and corrosion-proof quality to stainless steels.” It is distributed roughly equally throughout the planet.

He says the new result “adds another investigative tool for understanding and documenting past and present planetary processes. For the cosmochemistry and meteoritics communities, the findings further bolster the view that the solar nebula was a heterogeneous mixture of different components.”

Source: Science. The McDonough paper will be published online today by the journal Science, at the Science Express website.

Anne Minard

Anne Minard is a freelance science journalist with an academic background in biology and a fascination with outer space. Her first book, Pluto and Beyond, was published in 2007.

Recent Posts

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

5 hours ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

5 hours ago

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

When a spacecraft arrives at its destination, it settles into an orbit for science operations.…

9 hours ago

Another New Molecule Discovered Forming in Space

The list of chemicals found in space is growing longer and longer. Astronomers have found…

10 hours ago

JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study…

13 hours ago

A Cold Brown Dwarf is Belching Methane Into Space

Brown dwarfs span the line between planets and stars. By definition, a star must be…

14 hours ago