Categories: Solar Astronomy

Next Solar Max Will Be a Big One

Illustration of the “conveyor belt” on the Sun. Image credit: NASA. Click to enlarge.
We’ve now reached the Sun’s solar minimum; there’s not a sunspot anywhere across the surface of our closest star. Give it a few years, though, and it should be anything but quiet. Solar researchers think they understand the long term cycles of solar activity, and they’re predicting that the next Solar Maximum – expected to arrive between 2010 and 2012 – will be the strongest in 50 years.

It’s official: Solar minimum has arrived. Sunspots have all but vanished. Solar flares are nonexistent. The sun is utterly quiet.

Like the quiet before a storm.

This week researchers announced that a storm is coming–the most intense solar maximum in fifty years. The prediction comes from a team led by Mausumi Dikpati of the National Center for Atmospheric Research (NCAR). “The next sunspot cycle will be 30% to 50% stronger than the previous one,” she says. If correct, the years ahead could produce a burst of solar activity second only to the historic Solar Max of 1958.

That was a solar maximum. The Space Age was just beginning: Sputnik was launched in Oct. 1957 and Explorer 1 (the first US satellite) in Jan. 1958. In 1958 you couldn’t tell that a solar storm was underway by looking at the bars on your cell phone; cell phones didn’t exist. Even so, people knew something big was happening when Northern Lights were sighted three times in Mexico. A similar maximum now would be noticed by its effect on cell phones, GPS, weather satellites and many other modern technologies.

Dikpati’s prediction is unprecedented. In nearly-two centuries since the 11-year sunspot cycle was discovered, scientists have struggled to predict the size of future maxima—and failed. Solar maxima can be intense, as in 1958, or barely detectable, as in 1805, obeying no obvious pattern.

The key to the mystery, Dikpati realized years ago, is a conveyor belt on the sun.

We have something similar here on Earth—the Great Ocean Conveyor Belt, popularized in the sci-fi movie The Day After Tomorrow. It is a network of currents that carry water and heat from ocean to ocean–see the diagram below. In the movie, the Conveyor Belt stopped and threw the world’s weather into chaos.

The sun’s conveyor belt is a current, not of water, but of electrically-conducting gas. It flows in a loop from the sun’s equator to the poles and back again. Just as the Great Ocean Conveyor Belt controls weather on Earth, this solar conveyor belt controls weather on the sun. Specifically, it controls the sunspot cycle.

Solar physicist David Hathaway of the National Space Science & Technology Center (NSSTC) explains: “First, remember what sunspots are–tangled knots of magnetism generated by the sun’s inner dynamo. A typical sunspot exists for just a few weeks. Then it decays, leaving behind a ‘corpse’ of weak magnetic fields.”

Enter the conveyor belt.

“The top of the conveyor belt skims the surface of the sun, sweeping up the magnetic fields of old, dead sunspots. The ‘corpses’ are dragged down at the poles to a depth of 200,000 km where the sun’s magnetic dynamo can amplify them. Once the corpses (magnetic knots) are reincarnated (amplified), they become buoyant and float back to the surface.” Presto—new sunspots!

All this happens with massive slowness. “It takes about 40 years for the belt to complete one loop,” says Hathaway. The speed varies “anywhere from a 50-year pace (slow) to a 30-year pace (fast).”

When the belt is turning “fast,” it means that lots of magnetic fields are being swept up, and that a future sunspot cycle is going to be intense. This is a basis for forecasting: “The belt was turning fast in 1986-1996,” says Hathaway. “Old magnetic fields swept up then should re-appear as big sunspots in 2010-2011.”

Like most experts in the field, Hathaway has confidence in the conveyor belt model and agrees with Dikpati that the next solar maximum should be a doozy. But he disagrees with one point. Dikpati’s forecast puts Solar Max at 2012. Hathaway believes it will arrive sooner, in 2010 or 2011.

“History shows that big sunspot cycles ‘ramp up’ faster than small ones,” he says. “I expect to see the first sunspots of the next cycle appear in late 2006 or 2007—and Solar Max to be underway by 2010 or 2011.”

Who’s right? Time will tell. Either way, a storm is coming.

Original Source: Science@NASA

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

1 day ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

1 day ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

3 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

3 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

3 days ago