Categories: CassiniSaturnTitan

Titan Weather Report for Spring: Still Cold, but Clearing Skies

[/caption]

The beauty of an extended space mission is that scientists can make long term observations and find out things we’ve never known before. The Cassini spacecraft’s Visual and Infrared Mapping Spectrometer (VIMS) instrument has been monitoring clouds on Titan continuously since the spacecraft went into orbit around Saturn in 2004, and a team led by Sébastien Rodriguez (AIM laboratory – Université Paris Diderot) has used more than 2,000 VIMS images to create the first long-term study of Titan’s weather. Are they ready to make a weather forecast? They say Titan’s northern hemisphere is set for mainly fine spring weather, with polar skies clearing since the equinox in August last year.

Together with Saturn in its 30-years orbit around the Sun, Titan has seasons that last for 7 terrestrial years. The team has observed significant atmospheric changes between July 2004 (early summer in the southern hemisphere) and April 2010, the very start of northern spring. The images showed that cloud activity has recently decreased near both of Titan’s poles. These regions had been heavily overcast during the late southern summer until 2008, a few months before the equinox.

“Over the past six years, we’ve found that clouds appear clustered in three distinct latitude regions of Titan: large clouds at the north pole, patchy cloud at the south pole and a narrow belt around 40 degrees south. However, we are now seeing evidence of a seasonal circulation turnover on Titan – the clouds at the south pole completely disappeared just before the equinox and the clouds in the north are thinning out. This agrees with predictions from models and we are expecting to see cloud activity reverse from one hemisphere to another in the coming decade as southern winter approaches,” said Dr Rodriguez.

Fractional cloud coverage in Titan’s atmosphere integrated between July 2004 and April 2010. Black areas are cloud free and yellow are fully covered. Credit: NASA/JPL/University of Arizona/University of Nantes/ University of Paris Diderot

The team has used results from the Global Climate Models (GCMs) developed by Pascal Rannou (Institut Pierre Simon Laplace) to interpret the evolution of the observed cloud patterns over time. Northern polar clouds of ethane form in the Titan’s troposphere during the winter at altitudes of 30-50 km by a constant influx of ethane and aerosols from the stratosphere. In the other hemisphere, mid- and high-latitudes clouds are produced by the upwelling from the surface of air enriched in methane. Observations of the location and activity of Titan’s clouds over long periods are vital in developing a global understanding of Titan’s climate and meteorological cycle.

In Feburary 2010, the Cassini mission was extended to a few months past Saturn’s northern summer solstice in May 2017. This means that Rodriguez and his team will be able to observe the seasonal changes right the way through from mid-winter to mid-summer in the northern hemisphere.

“We have learned a lot about Titan’s climate since Cassini arrived in at Saturn but there is still a great deal to learn. With the new mission extension, we will have the opportunity to answer some of the key questions about the meteorology of this fascinating moon,” said Rodriguez.

Rodriguez presented the results at the European Planetary Science Congress 2010 in Rome.

Source: European Planetary Science Conference

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

11 hours ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

11 hours ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

1 day ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

2 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

2 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

2 days ago