Categories: Venus

Hot Atmosphere of Venus Might Cool the Interior

[/caption]

Venus is so hot, it’s cool! This very groovy 1960’s-looking image shows the temperature distribution within Venus and local mobilization at the surface, and is the result of new model of the atmosphere of Earth’s sister planet. The model reveals that the heat in the atmosphere induced from a strong greenhouse warming might actually have had a cooling effect on Venus’ interior. While counter intuitive, the theory might explain why Venus was a highly volcanic planet in the past. And interestingly, it might mean that Venus may have some active volcanoes even today. If so, that would be like, outta sight, man!

“For some decades we’ve known that the large amount of greenhouse gases in the atmosphere of Venus cause the extreme heat we observe presently,” said Lena Noack from the German Aerospace Center (DLR) in Berlin, lead author of the study who presented her findings at the European Planetary Science Congress (EPSC) in Rome.

“The carbon dioxide and other greenhouse gases that are responsible for the high temperatures were blown into the atmosphere by thousands of volcanoes in the past, “ Noack said. “The permanent heat – today we measure almost 470 degrees Celsius globally on Venus – might even have been much higher in the past and, in a runaway cycle, led to even more volcanism. But at a certain point this process turned on its head – the high temperatures caused a partial mobilization of the Venusians crust, leading to an efficient cooling of the mantle, and the volcanism strongly decreased. This resulted in lower surface temperatures, rather comparable to today’s temperature on Venus, and the mobilization of the surface stopped.”

The source of the magma, or molten rocky material, and the volcanic gases lies deep in the mantle of Venus. The decay of radioactive elements, inherited from the building blocks of the Solar System’s planets, and the heat stored in the interior from planet formation produce enough heat to generate partial melts of silicate-, iron- and magnesium-rich magma in the upper mantle. Molten rock has more volume and is lighter than the surrounding solid rock of identical composition. The magma therefore can rise upwards and eventually penetrate through the rigid crust in volcanic vents, spreading lava over the surface and blowing gases into the atmosphere, mostly greenhouse gases like carbon dioxide (CO2), water vapor (H2O) and sulfur dioxide (SO2).

3-D perspective of the Venusian volcano, Maat Mons generated from radar data from NASA’s Magellan mission.

However, the more greenhouse gases, the hotter the atmosphere – possibly leading to even more volcanism. To find out if this runaway process would end in a red-hot Venus, Lena Noack and Doris Breuer, co-author of the study, calculated for the first time a model where the hot atmosphere is ‘coupled’ to a 3D model of the planet’s interior. Unlike here on Earth, the high temperatures have a much bigger effect at the interface with the rocky surface, heating it up to a large extent.

“Interestingly, due to the rising surface temperatures, the surface is mobilized and the insulating effect of the crust diminishes,” said Noack. “The mantle of Venus loses much of its thermal energy to the outside. It’s a little bit like lifting the lid on the mantle: the interior of Venus suddenly cools very efficiently and the rate of volcanism ceases. Our model shows that after that ‘hot’ era of volcanism, the slow-down of volcanism leads to a strong decrease of the temperatures in the atmosphere”.

The calculations of the geophysicists yield another interesting result: the process of volcanic resurfacing takes place at different places at different times. When the atmosphere cools, the mobilization of the surface stops. However, there are indications from the European Space Agency’s Venus Express mission that there may be a few active volcanoes even today which resurface some spots with lava flows. While no volcanic activity has acutally been seen, Venus Express has detected ‘hot spots’, or unusual high surface temperatures at volcanoes previously thought to be extinct. So far no ‘smoking gun’, or active volcano has been identified on Venus – but it perhaps Venus Express or future space probes will detect the first active volcano on Earth’s neighbor.

Source: European Planetary Science Conference

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Fish Could Turn Regolith into Fertile Soil on Mars

What a wonderful arguably simple solution. Here’s the problem, we travel to Mars but how…

2 days ago

New Simulation Explains how Supermassive Black Holes Grew so Quickly

One of the main scientific objectives of next-generation observatories (like the James Webb Space Telescope)…

2 days ago

Don't Get Your Hopes Up for Finding Liquid Water on Mars

In the coming decades, NASA and China intend to send the first crewed missions to…

2 days ago

Webb is an Amazing Supernova Hunter

The James Webb Space Telescope (JWST) has just increased the number of known distant supernovae…

3 days ago

Echoes of Flares from the Milky Way’s Supermassive Black Hole

The supermassive black hole at the heart of our Milky Way Galaxy is a quiet…

3 days ago

Warp Drives Could Generate Gravitational Waves

Will future humans use warp drives to explore the cosmos? We're in no position to…

3 days ago