Categories: Enceladus

Cassini Finds “Heat” and More Geysers on Enceladus

[/caption]

Newly released images from last November’s close flyby over Saturn’s icy moon Enceladus the Cassini spacecraft reveal geyser jets spraying all along the prominent fractures, or “tiger stripes” that cross the moon’s south polar region. Additionally, a new detailed temperature map of one fracture reveals warmer temperatures than what was expected. “Enceladus continues to astound,” said Bob Pappalardo, Cassini project scientist at the Jet Propulsion Laboratory. “With each Cassini flyby, we learn more about its extreme activity and what makes this strange moon tick.”

The new images from the imaging science subsystem and the composite infrared spectrometer teams include the best 3-D image ever obtained of a tiger stripe fissure that sprays icy particles, water vapor and organic compounds. There are also views of regions not well-mapped previously on Enceladus, including a southern area with crudely circular tectonic patterns.

In this unique mosaic image combining high-resolution data from the imaging science subsystem and composite infrared spectrometer aboard NASA's Cassini spacecraft, pockets of heat appear along one of the mysterious fractures in the south polar region of Saturn's moon Enceladus. Image credit: NASA/JPL/GSFC/SWRI/SSI

For Cassini’s visible-light cameras, the Nov. 21, 2009 flyby provided the last look at Enceladus’ south polar surface before that region of the moon goes into 15 years of darkness, and includes the most detailed look yet at the jets.

Scientists planned to use this flyby to look for new or smaller jets not visible in previous images. In one mosaic, scientists count more than 30 individual geysers, including more than 20 that had not been seen before. At least one jet spouting prominently in previous images now appears less powerful.

“This last flyby confirms what we suspected,” said Carolyn Porco, imaging team lead based at the Space Science Institute in Boulder, Colo. “The vigor of individual jets can vary with time, and many jets, large and small, erupt all along the tiger stripes.”

A new map that combines heat data with visible-light images shows a 40-kilometer (25-mile) segment of the longest tiger stripe, known as Baghdad Sulcus. The map illustrates the correlation, at the highest resolution yet seen, between the geologically youthful surface fractures and the anomalously warm temperatures that have been recorded in the south polar region. The broad swaths of heat previously detected by the infrared spectrometer appear to be confined to a narrow, intense region no more than a kilometer (half a mile) wide along the fracture.

In these measurements, peak temperatures along Baghdad Sulcus exceed 180 Kelvin ( – 92 C, -135 F), and may be higher than 200 Kelvin (- 73 C, -100 F). These warm temperatures probably result from heating of the fracture flanks by the warm, upwelling water vapor that propels the ice-particle jets seen by Cassini’s cameras. Cassini scientists will be testing this idea by investigating how well the hot spots correspond with the jet sources.

“The fractures are chilly by Earth standards, but they’re a cozy oasis compared to the numbing 50 Kelvin (-223 C, -370 F) of their surroundings,” said John Spencer, a composite infrared spectrometer team member based at Southwest Research Institute in Boulder, Colo. “The huge amount of heat pouring out of the tiger stripe fractures may be enough to melt the ice underground. Results like this make Enceladus one of the most exciting places we’ve found in the solar system.”

Some of Cassini’s scientists infer that the warmer the temperatures are at the surface, the greater the likelihood that jets erupt from liquid. “And if true, this makes Enceladus’ organic-rich, liquid sub-surface environment the most accessible extraterrestrial watery zone known in the solar system,” Porco said.

The Nov. 21 flyby was the eighth targeted encounter with Enceladus. It took the spacecraft to within about 1,600 kilometers (1,000 miles) of the moon’s surface, at around 82 degrees south latitude.

Source: JPL

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

7 hours ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

7 hours ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

8 hours ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

8 hours ago

What Can AI Learn About the Universe?

Artificial intelligence and machine learning have become ubiquitous, with applications ranging from data analysis, cybersecurity,…

8 hours ago

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

1 day ago