Categories: AstronomyHubble

Hubble’s View of Supernova Remnant Cassiopeia A

NASA’s Hubble Space Telescope took this photograph of supernova remnant Cassiopeia A, one of the youngest remnants we know of in the Milky Way. The image was made up of 18 separate photos taken by Hubble using its Advanced Camera for Surveys, and it reveals the faint swirls of expanding debris. Astronomers believe the star that used to live at the centre exploded as a supernova about 340 years ago (as well as the 10,000 years it took for the light to reach us).

A new image taken with NASA’s Hubble Space Telescope provides a detailed look at the tattered remains of a supernova explosion known as Cassiopeia A (Cas A). It is the youngest known remnant from a supernova explosion in the Milky Way. The new Hubble image shows the complex and intricate structure of the star’s shattered fragments.

The image is a composite made from 18 separate images taken in December 2004 using Hubble’s Advanced Camera for Surveys (ACS), and it shows the Cas A remnant as a broken ring of bright filamentary and clumpy stellar ejecta. These huge swirls of debris glow with the heat generated by the passage of a shockwave from the supernova blast. The various colors of the gaseous shards indicate differences in chemical composition. Bright green filaments are rich in oxygen, red and purple are sulfur, and blue are composed mostly of hydrogen and nitrogen.

A supernova such as the one that resulted in Cas A is the explosive demise of a massive star that collapses under the weight of its own gravity. The collapsed star then blows its outer layers into space in an explosion that can briefly outshine its entire parent galaxy. Cas A is relatively young, estimated to be only about 340 years old. Hubble has observed it on several occasions to look for changes in the rapidly expanding filaments.

In the latest observing campaign, two sets of images were taken, separated by nine months. Even in that short time, Hubble’s razor-sharp images can observe the expansion of the remnant. Comparison of the two image sets shows that a faint stream of debris seen along the upper left side of the remnant is moving with high speed – up to 31 million miles per hour (fast enough to travel from Earth to the Moon in 30 seconds!).

Cas A is located ten thousand light-years away from Earth in the Cassiopeia constellation. Supernova explosions are the main source of elements more complex than oxygen, which are forged in the extreme conditions produced in these events. The analysis of such a nearby, relatively young and fresh example is extremely helpful in understanding the evolution of the universe.

Original Source: Hubble News Release

Fraser Cain

Fraser Cain is the publisher of Universe Today. He's also the co-host of Astronomy Cast with Dr. Pamela Gay. Here's a link to my Mastodon account.

Recent Posts

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

3 hours ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

3 hours ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

4 hours ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

4 hours ago

What Can AI Learn About the Universe?

Artificial intelligence and machine learning have become ubiquitous, with applications ranging from data analysis, cybersecurity,…

4 hours ago

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

1 day ago