Categories: Astronomy

Magnetic Fields Dominate Young Stars of all Sizes?

[/caption]

When it comes to the role of magnetism in the formation of stars, size might not matter.

A team of researchers led by Josep Girart, of the Institut de Ciències de l’Espai (in Spain), studied the slow evolution of a dust cloud into a massive star, and realized that the cloud’s magnetic field controls the star’s development more than any other factor. They propose that the story is the same for small stars — an idea that could offer a new way to understand the formation of the early universe.

The new hypothesis is presented in this week’s issue of the journal Science, and the lead image represents an artist’s rendering of the concept.

The background shows a false-color Spitzer image of the massive star-forming region G31.41, with the colors indicating various wavelengths of light.  The zoom-in region represents the dust emission from the massive hot core (color and contour image) superposed with bars showing the structure of the magnetic field.

Pictured in the bottom of the image is the Submillimeter Array in Hawaii, which was used for the observations.

The authors describe how the magnetic field at G31.41 has deformed the dust cloud into an hourglass shape – a telltale sign of magnetically controlled star formation.

They say that this magnetic energy dominates over the other energies at play — e.g., centrifugal force and turbulence — and suggest that the role of the magnetic field in the early stages of star formation could be very similar for both small and massive stars.

“The energetic relations do not differ too much” between massive and small stars, the authors write. “Both cores are collapsing because gravity has overcome pressure forces, but the collapsing dynamics are controlled by the magnetic energy rather than by turbulence.”

Girart and his colleagues point out that this only holds true for forming stars; older massive stars are more influenced by radiation and ionization pressure, turbulence, and outflows than by magnetic fields.

Massive stars play a crucial role in the production of heavy elements and in the evolution of the interstellar medium, so this discovery might eventually lead to new insights about the formation of the early universe.

Source: Science

Anne Minard

Anne Minard is a freelance science journalist with an academic background in biology and a fascination with outer space. Her first book, Pluto and Beyond, was published in 2007.

Recent Posts

Two Stars in a Binary System are Very Different. It's Because There Used to be Three

A beautiful nebula in the southern hemisphere with a binary star at it's center seems…

14 hours ago

The Highest Observatory in the World Comes Online

The history of astronomy and observatories is full of stories about astronomers going higher and…

14 hours ago

Is the JWST Now an Interplanetary Meteorologist?

The JWST keeps one-upping itself. In the telescope's latest act of outdoing itself, it examined…

15 hours ago

Solar Orbiter Takes a Mind-Boggling Video of the Sun

You've seen the Sun, but you've never seen the Sun like this. This single frame…

16 hours ago

What Can AI Learn About the Universe?

Artificial intelligence and machine learning have become ubiquitous, with applications ranging from data analysis, cybersecurity,…

16 hours ago

Enceladus’s Fault Lines are Responsible for its Plumes

The Search for Life in our Solar System leads seekers to strange places. From our…

2 days ago