Categories: Satellites

New Insights on Magnetars

[/caption]

Neutron stars are leftovers of massive stars (10-50 times as massive as our Sun) that have collapsed under their own weight. Most are only about 20 km in diameter, but they are so compact that a teaspoon of neutron star stuff would weigh about one hundred million tons. Two other physical properties characterize a neutron star: their fast rotation and strong magnetic field. Magnetars form a class of neutron stars with ultra-strong magnetic fields, approximately a thousand times stronger than that of ordinary neutron stars, making them the strongest known magnets in the cosmos. But astronomers have been unsure exactly why magnetars shine in X-rays. Data from ESA’s XMM-Newton and Integral orbiting observatories are being used to test, for the first time, the X-ray properties of magnetars.

So far, about 15 magnetars have been found. Five of them are known as soft gamma repeaters, or SGRs, because they sporadically release large, short bursts (lasting about 0.1 s) of low energy (soft) gamma rays and hard X-rays. The rest, about 10, are associated with anomalous X-ray pulsars, or AXPs. Although SGRs and AXPs were first thought to be different objects, we now know that they share many properties and that their activity is sustained by their strong magnetic fields.

Magnetars are different from ‘ordinary’ neutron stars because their internal magnetic field is thought to be strong enough to twist the stellar crust. Like in a circuit fed by a gigantic battery, this twist produces currents in the form of electron clouds which flow around the star. These currents interact with the radiation coming from the stellar surface, producing the X-rays.

An artist's impression of XMM-Newton. Credits: ESA (Image by C. Carreau)

Until now, scientists could not test their predictions, because it is not possible to produce such ultra-strong magnetic fields in laboratories on Earth.

To understand this phenomenon, a team led by Dr Nanda Rea from the University of Amsterdam used XMM-Newton and Integral data to search for these dense electron clouds around all known magnetars, for the first time.

Rea’s team found evidence that large electron currents do actually exist, and were able to measure the electron density which is a thousand times stronger than in a ‘normal’ pulsar. They have also measured the typical velocity at which the electron currents flow. With it, scientists have now established a link between an observed phenomenon and an actual physical process, an important clue in the puzzle of understanding these celestial objects.

The team is now working hard to develop and test more detailed models on the same line, to fully understand the behavior of matter under the influence of such strong magnetic fields.

Source: ESA

Nancy Atkinson

Nancy has been with Universe Today since 2004, and has published over 6,000 articles on space exploration, astronomy, science and technology. She is the author of two books: "Eight Years to the Moon: the History of the Apollo Missions," (2019) which shares the stories of 60 engineers and scientists who worked behind the scenes to make landing on the Moon possible; and "Incredible Stories from Space: A Behind-the-Scenes Look at the Missions Changing Our View of the Cosmos" (2016) tells the stories of those who work on NASA's robotic missions to explore the Solar System and beyond. Follow Nancy on Twitter at https://twitter.com/Nancy_A and and Instagram at and https://www.instagram.com/nancyatkinson_ut/

Recent Posts

First Light from Einstein Probe: A Supernova Remnant

On 9 January 2024, the Einstein probe was launched, its mission to study the night…

9 hours ago

Galaxies Evolved Surprisingly Quickly in the Early Universe

Anyone familiar with astronomy will know that galaxies come in a fairly limited range of…

9 hours ago

How Knot Theory Can Help Spacecraft Can Change Orbits Without Using Fuel

When a spacecraft arrives at its destination, it settles into an orbit for science operations.…

13 hours ago

Another New Molecule Discovered Forming in Space

The list of chemicals found in space is growing longer and longer. Astronomers have found…

13 hours ago

JWST Uses “Interferometry Mode” to Reveal Two Protoplanets Around a Young Star

The JWST is flexing its muscles with its interferometry mode. Researchers used it to study…

17 hours ago

A Cold Brown Dwarf is Belching Methane Into Space

Brown dwarfs span the line between planets and stars. By definition, a star must be…

18 hours ago